Machine Learning Classification Bootcamp in Python
What you'll learn
- Apply advanced machine learning models to perform sentiment analysis and classify customer reviews such as Amazon Alexa products reviews
- Understand the theory and intuition behind several machine learning algorithms such as K-Nearest Neighbors, Support Vector Machines (SVM), Decision Trees, Random Forest, Naive Bayes, and Logistic Regression
- Implement classification algorithms in Scikit-Learn for K-Nearest Neighbors, Support Vector Machines (SVM), Decision Trees, Random Forest, Naive Bayes, and Logistic Regression
- Build an e-mail spam classifier using Naive Bayes classification Technique
- Apply machine learning models to Healthcare applications such as Cancer and Kyphosis diseases classification
- Develop Models to predict customer behavior towards targeted Facebook Ads
- Classify data using K-Nearest Neighbors, Support Vector Machines (SVM), Decision Trees, Random Forest, Naive Bayes, and Logistic Regression
- Build an in-store feature to predict customer's size using their features
- Develop a fraud detection classifier using Machine Learning Techniques
- Master Python Seaborn library for statistical plots
- Understand the difference between Machine Learning, Deep Learning and Artificial Intelligence
- Perform feature engineering and clean your training and testing data to remove outliers
- Master Python and Scikit-Learn for Data Science and Machine Learning
- Learn to use Python Matplotlib library for data Plotting
Course content
- Preview02:26
- 00:00Introduction and Welcome Message [Course Material Download]
- 00:33BONUS: Learning Paths
- 01:04Updates on Udemy Reviews
- Preview11:56
- 00:06Get the Materials
Requirements
- Basic knowledge of Python Programming
- Experienced computer user
Description
Are you ready to master Machine Learning techniques and Kick-off your career as a Data Scientist?!
You came to the right place!
Machine Learning skill is one of the top skills to acquire in 2019 with an average salary of over $114,000 in the United States according to PayScale! The total number of ML jobs over the past two years has grown around 600 percent and expected to grow even more by 2020.
This course provides students with knowledge, hands-on experience of state-of-the-art machine learning classification techniques such as
Logistic Regression
Decision Trees
Random Forest
Naïve Bayes
Support Vector Machines (SVM)
In this course, we are going to provide students with knowledge of key aspects of state-of-the-art classification techniques. We are going to build 10 projects from scratch using real world dataset, here’s a sample of the projects we will be working on:
Build an e-mail spam classifier.
Perform sentiment analysis and analyze customer reviews for Amazon Alexa products.
Predict the survival rates of the titanic based on the passenger features.
Predict customer behavior towards targeted marketing ads on Facebook.
Predicting bank client’s eligibility to retire given their features such as age and 401K savings.
Predict cancer and Kyphosis diseases.
Detect fraud in credit card transactions.
Key Course Highlights:
This comprehensive machine learning course includes over 75 HD video lectures with over 11 hours of video content.
The course contains 10 practical hands-on python coding projects that students can add to their portfolio of projects.
No intimidating mathematics, we will cover the theory and intuition in clear, simple and easy way.
All Jupyter noteboooks (codes) and slides are provided.
10+ years of experience in machine learning and deep learning in both academic and industrial settings have been compiled in this course.
Students who enroll in this course will master machine learning classification models and can directly apply these skills to solve real world challenging problems.
Who this course is for:
- Data Science Enthusiasts wanting to enhance their machine learning skills
- Python programmers curious about Machine Learning and Data Science
- Programmers or developers who want to make a shift into the lucrative data science and machine learning career path
- Technologists wanting to gain an understanding of how machine learning models work
- Data analysts who want to transition into the Tech industry
Instructors
Ryan Ahmed is a best-selling Udemy instructor who is passionate about education and technology. Ryan's mission is to make quality education accessible and affordable to everyone. Ryan holds a Ph.D. degree in Mechanical Engineering from McMaster* University, with focus on Mechatronics and Electric Vehicle (EV) control. He also received a Master’s of Applied Science degree from McMaster, with focus on Artificial Intelligence (AI) and fault detection and an MBA in Finance from the DeGroote School of Business.
Ryan held several engineering positions at Fortune 500 companies globally such as Samsung America and Fiat-Chrysler Automobiles (FCA) Canada. Ryan has taught several courses on Science, Technology, Engineering and Mathematics to over 200,000+ students globally. He has over 15 published journal and conference research papers on state estimation, AI, Machine learning, battery modeling and EV controls. He is the co-recipient of the best paper award at the IEEE Transportation Electrification Conference and Expo (iTEC 2012) in Detroit, MI, USA.
Ryan is a Stanford Certified Project Manager (SCPM), certified Professional Engineer (P.Eng.) in Ontario, a member of the Society of Automotive Engineers (SAE), and a member of the Institute of Electrical and Electronics Engineers (IEEE). He is also the program Co-Chair at the 2017 IEEE Transportation and Electrification Conference (iTEC’17) in Chicago, IL, USA.
* McMaster University is one of only four Canadian universities consistently ranked in the top 100 in the world.
Mitch is a Canadian filmmaker from Harrow Ontario, Canada. In 2016 he graduated from Dakota State University with a B.S, in Computer Graphics specializing in Film and Cinematic Arts.
Currently, Mitch operates as the Chairman of Red Cape Studios, Inc. where he continues his passion for filmmaking. He is also the Host of Red Cape Learning and Produces / Directs content for Red Cape Films.
He has reached over 380,000 + Students on Udemy and Produced more than 3X Best-Selling Courses.
Mitch is currently working Producing Online Educational Courses thru Red Cape Studios Inc.
Winning several awards at Dakota State University such as "1st Place BeadleMania", "Winner College 10th Anniversary Dordt Film Festival" as well as "Outstanding Artist Award College of Arts and Sciences".
Mitch has been Featured on CBC's "Windsors Shorts" Tv Show and was also the Producer/Director for TEDX Windsor, featuring speakers from across the Country.
Hi there,
We are the Ligency PR and Marketing team. You will be hearing from us when new courses are released, when we publish new podcasts, blogs, share cheatsheets and more!
We are here to help you stay on the cutting edge of Data Science and Technology.
See you in class,
Sincerely,
The Real People at Ligency