Udemy
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
Development
Web Development Data Science Mobile Development Programming Languages Game Development Database Design & Development Software Testing Software Engineering Software Development Tools No-Code Development
Business
Entrepreneurship Communication Management Sales Business Strategy Operations Project Management Business Law Business Analytics & Intelligence Human Resources Industry E-Commerce Media Real Estate Other Business
Finance & Accounting
Accounting & Bookkeeping Compliance Cryptocurrency & Blockchain Economics Finance Finance Cert & Exam Prep Financial Modeling & Analysis Investing & Trading Money Management Tools Taxes Other Finance & Accounting
IT & Software
IT Certifications Network & Security Hardware Operating Systems & Servers Other IT & Software
Office Productivity
Microsoft Apple Google SAP Oracle Other Office Productivity
Personal Development
Personal Transformation Personal Productivity Leadership Career Development Parenting & Relationships Happiness Esoteric Practices Religion & Spirituality Personal Brand Building Creativity Influence Self Esteem & Confidence Stress Management Memory & Study Skills Motivation Other Personal Development
Design
Web Design Graphic Design & Illustration Design Tools User Experience Design Game Design 3D & Animation Fashion Design Architectural Design Interior Design Other Design
Marketing
Digital Marketing Search Engine Optimization Social Media Marketing Branding Marketing Fundamentals Marketing Analytics & Automation Public Relations Paid Advertising Video & Mobile Marketing Content Marketing Growth Hacking Affiliate Marketing Product Marketing Other Marketing
Lifestyle
Arts & Crafts Beauty & Makeup Esoteric Practices Food & Beverage Gaming Home Improvement & Gardening Pet Care & Training Travel Other Lifestyle
Photography & Video
Digital Photography Photography Portrait Photography Photography Tools Commercial Photography Video Design Other Photography & Video
Health & Fitness
Fitness General Health Sports Nutrition & Diet Yoga Mental Health Martial Arts & Self Defense Safety & First Aid Dance Meditation Other Health & Fitness
Music
Instruments Music Production Music Fundamentals Vocal Music Techniques Music Software Other Music
Teaching & Academics
Engineering Humanities Math Science Online Education Social Science Language Learning Teacher Training Test Prep Other Teaching & Academics
Web Development JavaScript React Angular CSS Node.Js PHP HTML5 Vue JS
AWS Certification Microsoft Certification AWS Certified Solutions Architect - Associate AWS Certified Cloud Practitioner CompTIA A+ Amazon AWS Cisco CCNA Microsoft AZ-900 AWS Certified Developer - Associate
Microsoft Power BI SQL Tableau Data Modeling Business Analysis Business Intelligence MySQL Qlik Sense Blockchain
Unity Unreal Engine Game Development Fundamentals C# 3D Game Development C++ Unreal Engine Blueprints 2D Game Development Virtual Reality
Google Flutter Android Development iOS Development React Native Swift Dart (programming language) Mobile App Development Kotlin SwiftUI
Graphic Design Photoshop Adobe Illustrator Drawing Digital Painting Canva InDesign Character Design Procreate Digital Illustration App
Life Coach Training Neuro-Linguistic Programming Personal Development Personal Transformation Life Purpose Mindfulness Meditation Sound Therapy CBT Cognitive Behavioral Therapy
Entrepreneurship Fundamentals Business Fundamentals Freelancing Business Strategy Startup Business Plan Online Business Blogging Home Business
Digital Marketing Social Media Marketing Marketing Strategy Internet Marketing Google Analytics Copywriting Email Marketing YouTube Marketing Podcasting

DevelopmentData Science

Data science with R: tidyverse

R Programming Language, Data Analysis, Data Cleaning, Data Science, Data Wrangling, tidyverse, dplyr, ggplot2, RStudio
Rating: 4.3 out of 54.3 (84 ratings)
698 students
Created by Marko Intihar
Last updated 8/2021
English
English [Auto]

What you'll learn

  • How to use R's tidyverse libraries in your data science projects
  • How to write efficient R code for data science related tasks
  • What is clean data
  • How to clean your data with R
  • What is grammar of data wrangling
  • How to wrangle data with dplyr and tidyr
  • How to import data into R
  • How to properly parse imported data
  • How to chain R's functions into a pipeline
  • How to manipulate strings
  • What are Regular Expressions
  • How to use stringr library with Regular Expressions
  • How to use forcats library to manipulate categorical variables
  • What is Grammar of Graphics
  • How to visualize data with ggplot2 library
  • What is functional programing
  • How to use purrr library for mapping functions, nesting data, manipulating lists, etc.
  • What is relational data
  • How to use dplyr library for relational data
  • What is tidy evaluation
  • How to use tidyverse tools to finish a practical project

Requirements

  • R and RStudio already installed on your computer.
  • Basic knowledge of statistics is a plus.
  • Basic to intermediate R knowledge is a plus.
  • Complete R beginners will find course more challenging.
  • For complete R beginners I recommend first taking one of the R beginners courses.
  • Interest in data science and data science related tasks.
  • Interest in how to write efficient R code.
  • Please update R or R's libraries if necessary. List of versions ( R and all R's libraries used in the exercises) provided at the beginning and at the end of course material.

Description

Data Science skills are still one of the most in-demand skills on the job market today. Many people see only the fun part of data science, tasks like:  "search for data insight", "reveal the hidden truth behind the data", "build predictive models", "apply machine learning algorithms", and so on. The reality, which is known to most data scientists, is, that when you deal with real data, the most time-consuming operations of any data science project are: "data importing", "data cleaning", "data wrangling", "data exploring" and so on. So it is necessary to have an adequate tool for addressing given data-related tasks. What if I say, there is a freely accessible tool, that falls into the provided description above!


R is one of the most in-demand programming languages when it comes to applied statistics, data science, data exploration, etc. If you combine R with R's collection of libraries called tidyverse, you get one of the deadliest tools, which was designed for data science-related tasks. All tidyverse libraries share a unique philosophy, grammar, and data types. Therefore libraries can be used side by side, and enable you to write efficient and more optimized R code, which will help you finish projects faster.


This course includes several chapters, each chapter introduces different aspects of data-related tasks, with the proper tidyverse tool to help you deal with a given task. Also, the course brings to the table theory related to the topic, and practical examples, which are covered in R. If you dive into the course, you will be engaged with many different data science challenges, here are just a few of them from the course:

  • Tidy data, how to clean your data with tidyverse?

  • Grammar of data wrangling.

  • How to wrangle data with dplyr and tidyr.

  • Create table-like objects called tibble.

  • Import and parse data with readr and other libraries.

  • Deal with strings in R using stringr.

  • Apply Regular Expressions concepts when dealing with strings.

  • Deal with categorical variables using forcats.

  • Grammar of Data Visualization.

  • Explore data and draw statistical plots using ggplot2.

  • Use concepts of functional programming, and map functions using purrr.

  • Efficiently deal with lists with the help of purrr.

  • Practical applications of relational data.

  • Use dplyr for relational data.

  • Tidy evaluation inside tidyverse.

  • Apply tidyverse tools for the final practical data science project.


Course includes:

  • over 25 hours of lecture videos,

  • R scripts and additional data (provided in the course material),

  • engagement with assignments at the end of each chapter,

  • assignments walkthrough videos (where you can check your results).

All being said this makes one of Udemy's most comprehensive courses for data science-related tasks using R and tidyverse.


Enroll today and become the master of R's tidyverse!!!


Who this course is for:

  • Anyone who is interested in data science
  • Anyone who is interested in data analysis
  • Anyone who is interested in writing efficient R code
  • Anyone whose job, research or hobby is related to data cleaning or data visualizing
  • Aspiring data scientists, statisticians or data (business) analysts
  • Anyone who deals with data modeling and is usually struggling with data preparation / cleaning step
  • Students working with data

Instructor

Marko Intihar
Data Scientist, Researcher and Teacher
Marko Intihar
  • 4.3 Instructor Rating
  • 580 Reviews
  • 8,160 Students
  • 3 Courses

Hi, my name is Marko Intihar. I have a Ph.D. from Logistics from the University of Maribor, and years of professional experience as an instructor and an expert in the fields of applied Statistics, Data science and programming. During my active academic career, I have published several scientific papers in the domain of time series modeling.

I began my professional career as a researcher and a teaching assistant at the university. Core teaching and research fields were statistics, data analysis, and operations research.

After several years of working for the university, I have decided to test my theoretical knowledge and apply my skills for solving practical problems from the industry. I employed as a data scientist for the biggest Slovenian retail company. In retail tons of data are generated daily, therefore I was able to enhance my data mining and machine learning skills to deliver practical solutions for the company.

After 4 years of working in retail, I decided to move to the financial sector. Currently, I am working as a data scientist in a bank. The banking industry carries different kinds of challenges as the retail industry, therefore work enables lots of substance for professional and personal growth.

I am an enthusiastic data scientist is my private life, therefore my career and hobby go with one and another perfectly.

It would be my pleasure to share some of my knowledge with you.


Top companies choose Udemy Business to build in-demand career skills.
NasdaqVolkswagenBoxNetAppEventbrite
  • Udemy Business
  • Teach on Udemy
  • Get the app
  • About us
  • Contact us
  • Careers
  • Blog
  • Help and Support
  • Affiliate
  • Investors
  • Impressum Kontakt
  • Terms
  • Privacy policy
  • Cookie settings
  • Sitemap
  • Accessibility statement
Udemy
© 2022 Udemy, Inc.