Statistics with R  Beginner Level
 3 hours ondemand video
 13 articles
 12 downloadable resources
 Full lifetime access
 Access on mobile and TV
 Certificate of Completion
Get your team access to Udemy's top 3,000+ courses anytime, anywhere.
Try Udemy for Business manipulate data in R (filter and sort data sets, recode and compute variables)

compute statistical indicators (mean, median, mode etc.)

determine skewness and kurtosis
 get statistical indicators by subgroups of the population
 build frequency tables
 build crosstables
 create histograms and cumulative frequency charts
 build column charts, mean plot charts and scatterplot charts
 build boxplot diagrams
 check the normality assumption for a data series
 detect the outliers in a data series
 perform univariate analyses (onesample t test, binomial test, chisquare test for goodnessoffit)
 R and R studio
 knowledge of basic statistics
If you want to learn how to perform the basic statistical analyses in the R program, you have come to the right place.
Now you don’t have to scour the web endlessly in order to find how to compute the statistical indicators in R, how to build a crosstable, how to build a scatterplot chart or how to compute a simple statistical test like the onesample t test. Everything is here, in this course, explained visually, step by step.
So, what will you learn in this course?
First of all, you will learn how to manipulate data in R, to prepare it for the analysis: how to filter your data frame, how to recode variables and compute new variables.
Afterwards, we will take care about computing the main statistical figures in R: mean, median, standard deviation, skewness, kurtosis etc., both in the whole population and in subgroups of the population.
Then you will learn how to visualize data using tables and charts. So we will build tables and crosstables, as well as histograms, cumulative frequency charts, column and mean plot charts, scatterplot charts and boxplot charts.
Since assumption checking is a very important part of any statistical analysis, we could not elude this topic. So we’ll learn how to check for normality and for the presence of outliers.
Finally, we will perform some basic, onesample statistical tests and interpret the results. I’m talking about the onesample t test, the binomial test and the chisquare test for goodnessoffit.
So after graduating this course, you will know how to perform the essential statistical procedures in the R program. So… enroll today! students
 PhD candidates
 academic researchers
 business researchers
 University teachers
 anyone looking for a job in the statistical analysis field
 anyone who is passionate about quantitative analysis
How to filter your data frames with brackets (in base R).