Explaining the Core Theories of Econometrics

This is an introductory College level econometrics course. Ideal for students who want to learn in a more intuitive way.
4.3 (34 ratings) Instead of using a simple lifetime average, Udemy calculates a
course's star rating by considering a number of different factors
such as the number of ratings, the age of ratings, and the
likelihood of fraudulent ratings.
342 students enrolled
$19
$30
37% off
Take This Course
  • Lectures 29
  • Length 4 hours
  • Skill Level Beginner Level
  • Languages English
  • Includes Lifetime access
    30 day money back guarantee!
    Available on iOS and Android
    Certificate of Completion
Wishlisted Wishlist

How taking a course works

Discover

Find online courses made by experts from around the world.

Learn

Take your courses with you and learn anywhere, anytime.

Master

Learn and practice real-world skills and achieve your goals.

About This Course

Published 2/2013 English

Course Description

"Much clearer than my Uni's lectures!" - Unsuya Karsan

In this course we'll help you understand the key Econometric theories and in particular give you an intuitive framework to build on. Econometrics can often feel overwhelmingly complicated. This course will give you a solid foundation to prepare for your specific University or College's Econometrics exam.

"It was really useful, very well explained and interesting. I recommend it" - Marius Meza

With rates for Econometrics tutoring starting out at about $50+ per hour, our price of $74 for over 4 hours of content offers additional value by giving you unlimited access to the material and allowing you pause, rewind, fast forward and generally review the content to increase retention.

"Excellent explanation! I'm taking an "Introduction to Econometrics" course as an undergraduate and most of the time the instructor is long on mathematics and short on intuition. I needed this video to help me grasp why estimators are biased, and you succeeded in doing just that. Job well done!" - seanch84

Our aim is to help you fully understand the key Econometrics theories so once signed up, please do not hesitate to reach out to us if you feel there are any topics that you would like more clarity on.

COURSE TOPICS COVERED

*Learn Simple and Multiple Linear Regression.

*Acquire knowledge of Gauss Markov assumptions and theory.

*Master Finite Sample Properties of Ordinary Least Squares (OLS) Method (including proof of unbiasedness).

*Become competent in Hypothesis Testing (including Normal, t, F and Chi-squared tests).

*Grasp Variable Misspecification (excluding a relevant variable, including an irrelevant variable).

*Understand Homoskedasticity and Heteroskedasticity.

"Truly outstanding. The reinforcement of the global view helped me understand the context and motivation of regression analysis. Plus, the reinforcement of the purpose of the regression intuition made the applied methods logical and easier for me to comprehend and thus learn. Nkaizu's Econometrics course taught me a lot! I wish there were a continuation of this course with advance applications. Thank you nkaizu!"- Edward Dunn

What are the requirements?

  • It would be ideal although not absolutely necessary if you already have an idea of basic university statistics and linear algebra.

What am I going to get from this course?

  • In this course we'll help you understand the key Econometric theories and in particular give you an intuitive framework to build on. Econometrics can often feel overwhelmingly complicated. This course will give you a solid foundation to prepare for your specific University or College's Econometrics exam.

What is the target audience?

  • If you are studying Econometrics at university or college and would like some assistance understanding it then we can help. Our course may also be useful if you are a top student who wants to learn faster and in a more efficient manner. Either way, this course is best watched all at once to give you a complete overview of the subject in a relatively short period of time, after which you can then return to your studies.

What you get with this course?

Not for you? No problem.
30 day money back guarantee.

Forever yours.
Lifetime access.

Learn on the go.
Desktop, iOS and Android.

Get rewarded.
Certificate of completion.

Curriculum

Section 1: Simple Linear Regression
05:17

Introductory lecture introducing the concept of linear regression

09:38
Lecture about the underlying intuition behind hypothesis testing, including why it is important and then an overview of how we go about it.
11:40
Lecture about the underlying intuition behind hypothesis testing, including why it is important and then an overview of how we go about it.
13:01
Lecture on how hypothesis testing can go wrong if our estimators are biased.
09:34
An overview of the causes of bias as well as a setup of OLS estimator's unbiasedness.
09:04

Lecture on the intuition of estimator variance and why we care about it within the context of hypothesis testing.

11:53
Mathematical derivation of OLS Decomposition formula. This decomposition will prove useful when proving OLS' unbiasedness
13:03
Mathematical proof of OLS' unbiasedness.
05:02
Mathematical proof of OLS' unbiasedness.
13:09

The reason why we usually prefer OLS as an estimation method when we want to hypothesis test is put in the context of the Gauss-Markov theorem and assumptions.

04:55
The reason why we usually prefer OLS as an estimation method when we want to hypothesis test is put in the context of the Gauss-Markov theorem and assumptions.
06:41
Lecture on OLS estimator variance and its importance in determining which estimator we want to choose.
Section 2: Multiple Linear Regression
13:40
Introducing matrix notation which will, ultimately, making working in the multiple linear regression model easier.
04:25
Introducing matrix notation which will, ultimately, making working in the multiple linear regression model easier.
07:11
Gauss Markov assumptions in matrix notation and the multiple linear regression model context.
06:05
Mathematical proof of OLS' unbiasedness in matrix notation within the multiple linear regression model context.
05:47
OLS' estimator variance in matrix notation within the multiple linear regression model context.
Section 3: Hypothesis Testing
10:07
Introduction of the RSS and Wald hypothesis testing methods.
05:37
Lecture on some relevant notation that we need to properly look at the RSS and Wald Hypothesis Testing methods.
11:18
RSS Method in full.
07:56
Wald Method in full for both sigma u^2 being known and unknown
05:06

The Wald and RSS Methods were hypothesis testing at a model level. For this lecture we introduce testing one specific linear restriction rather than the whole model.

Section 4: Gauss-Markov assumptions not holding...
07:31
This lecture is when we start to look at what happens when things start going wrong. We ask the question what happens when our Gauss-Markov assumptions don't hold? In this lecture we focus on how A1 can not hold.
05:01

A brief lecture on the relevant matrix notation we need to explore variable misspecification further.

02:49
A lecture on the first way that A1 can not hold: exclusion of a relevant variable. This is the really fatal one and the one we must avoid at all costs.
02:55

A lecture on the second way that A2 can not hold: inclusion of an irrelevant variable. Although by no means ideal this is most certaintly the lesser evil when compared to excluding a relevant variable.

10:51
A lecture on the way that A4 can not hold, specifically we can get multicollinearity!
08:52
A lecture on the way that A3 may not hold, specifically we might get heteroskedastic rather than homoskedastic errors!
Section 5: Section 5: The End!
Concluding comments
03:35

Students Who Viewed This Course Also Viewed

  • Loading
  • Loading
  • Loading

Instructor Biography

nkaizu Lectures, Startup education company

After studying modules like Linear Algebra, Calculus, Macro and Micro Economics as well as of course Econometrics at the London School of Economics and finding learning these subjects very difficult ourselves, we were inspired to set up an Education company: nkaizu that specialises in University level Economics and Math courses. After being successful with a Linear Algebra Course we created which got more than 100,000 views (on youtube), the next step was to work on this Econometrics course. We hope that if you are a student feeling understandably, overwhelmed by Econometrics, this will help you build a strong, intuitive foundation of understanding of the subject, which you can use to tackle preparing for your own specific Econometrics course and ultimately exam.

Ready to start learning?
Take This Course