VSD - SoC Design of the PicoRV32 RISCV micro-processor
What you'll learn
- Run a full physical design flow from RTL design to GDSII, making it ready for tape-out.
- For freshers, this course will make them industry ready and might increase their chances of getting placed or work for tier-1 company
- For experienced VLSI Physical design professionals, this will give a bigger picture of SoC physical design, which is appplication specific
- For senior non-VLSI engineers, this course will help them understand the whole flow, with pictures, labs and visualization
Requirements
- Knowledge about previous course "VSD - Making the Raven chip: How to design a RISC-V SoC" is nice to have, but not must to have as this course focuses on Physical design concepts, like synthesis, placement, routing, DRC, LVS and tapeout needs
- Knowledge about clock tree synthesis/STA/custom layout is nice to have and can be taken from existing VSD courses Udemy. Take up the courses "VSD - clock tree synthesis", "VSD - Static timing analysis" and "VSD - Custom Layout" on Udemy
Description
This webinar was conducted on 2nd June 2018
After successful webinar on Making of Raven Chip, this time we take the chip forward and implement using end-to-end opensource EDA tools, and all on efabless cloud. What does this mean to us? It means, you can start innovating on a design, build RTL and do synth/PD/LVS/DRC all using opensource EDA framework and not pay a single penny for license.
The big question How is this possible? Thereby, I welcome you all to my next (follow-up) webinar with Tim Edwards and Mohamed Kassem
About instructors -
Tim Edwards
Tim Edwards has been doing analog VLSI design and collecting and developing open-source EDA tools for over 25 years. He has worked for the Johns Hopkins Applied Physics Lab, startups MultiGiG (bought by Analog Devices) and most recently, eFabless.
Mohamed Kassem
Mohamed Kassem is the cofounder and CTO of eFabless corporation. Prior to launching eFabless in 2014, Mohamed held several technical and global leadership positions within TI's Wireless Business Unit. He joined TI in 2000 at the beginning of the digital telephony revolution fueled by the unprecedented integration of major phone functions on a single SoC. He led the first development of 45nm, 28nm analog & mixed-signal IP functions for wireless applications processors. Mohamed holds a masters degree in electrical engineering from the University of Waterloo, Ontario, Canada.
Who this course is for:
- Anyone curious to know end-to-end aspects of chip designing i.e from SOC design to tapeout, which involves lot of steps like placement, routing, clock tree synthesis, DRC cleanup, LVS fixing
- Anyone curious to know how to achieve all of above using all EDA open-source tools. Not a single penny to be paid as license fee
- Anyone who wishes to innovate, implement and submit a paper on any design, implemented using open-source tools
Instructors
Tips on order in which you need to learn VLSI and become a CHAMPION:
If I would had been you, I would had started with Physical Design and Physical design webinar course where I understand the entire flow first, then would have moved to CTS-1 and CTS-2 to look into details of how the clock is been built.
Then, as you all know how crosstalk impacts functioning at lower nodes, I would gone for Signal Integrity course to understand impacts of scaling and fix them. Once I do that, I would want to know how to analyze performance of my design and I would have gone for STA-1, STA-2 and Timing ECO webinar courses, respectively
Once you STA, there’s an internal curiosity which rises, and wants us to understand, what goes inside timing analysis at transistor level. To full-fill that, I would had taken Circuit design and SPICE simulations Part 1 and Part 2 courses.
And finally, to understand pre-placed cells, IP’s and STA in even more detail, I would have taken custom layout course and Library Characterization course
All of above needs to be implemented using a CAD tool and needs to be done faster, for which I would have written TCL or perl scripts. So for that, I would start to learn TCL-Part1 and TCL-Part2 courses, at very beginning or in middle
Finally, if I want to learn RTL and synthesis, from specifications to layout, RISC-V ISA course will teach the best way to define specs for a complex system like microprocessor
Connect with me for more guidance !!
Hope you enjoy the session best of luck for future
Kunal Ghosh is the Director and co-founder of VLSI System Design (VSD) Corp. Pvt. Ltd. Prior to launching VSD in 2017, Kunal held several technical leadership positions at Qualcomm's Test-chip business unit. He joined Qualcomm in 2010. He led the Physical design and STA flow development of 28nm, 16nm test-chips. At 2013, he joined Cadence as Lead Sales Application engineer for Tempus STA tool. Kunal holds a Masters degree in Electrical Engineering from Indian Institute of Technology (IIT), Bombay, India and specialized in VLSI Design & Nanotechnology.
Hands on with Technology @
1) MSM (mobile station mode chips) - MSM chips are used for CDMA modulation/demodulation. It consists of DSP’s and microprocessors for running applications such as web-browsing, video conferencing, multimedia services, etc.
2) Memory test chips - Memory test chips are used to validate functionality of 28nm custom/compiler memory as well as characterize their timing, power and yield.
3) DDR-PHY test chips - DDR-PHY test chips are basically tested for high speed data transfer
4) Timing and physical design Flow development for 130nm MOSFET technology node till 16nm FinFET technology node.
5) “IR aware STA” and “Low power STA”
6) Analyzed STA engine behavior for design size up to 850 million instance count ACADEMIC
1) Research Assistant to Prof. Richard Pinto and Prof. Anil Kottantharayil on “Sub-100nm optimization using Electron Beam Lithography”, which intended to optimize RAITH-150TWO Electron Beam Lithography tool and the process conditions to attain minimum resolution, use the mix-and-match capabilities of the tool for sub-100nm MOSFET fabrication and generate mask plates for feature sizes above 500nm.
2) Research Assistant to with Prof. Madhav Desai, to characterize RTL, generated from C-to-RTL AHIR compiler, in terms of power, performance and area. This was done by passing RTL, generated from AHIR compiler, through standard ASIC tool chain like synthesis and place & route. The resulting netlist out of PNR was characterized using standard software
PUBLICATION
1) “A C-to-RTL Flow as an Energy Efficient Alternative to Embedded Processors in Digital Systems” submitted in the conference “13th Euromicro Conference on Digital System Design, Architectures, Methods and Tools, DSD 2010, 1-3 September 2010, Lille, France”
2) Concurrent + Distributed MMMC STA for 'N' views
3) Signoff Timing and Leakage Optimization On 18M Instance Count Design With 8000 Clocks and Replicated Modules Using Master Clone Methodology With EDI Cockpit
4) Placement-aware ECO Methodology - No Slacking on Slack
Tim Edwards has been designing analog VLSI circuits and systems and developing open-source EDA tools for many years, from the Space Department at the Johns Hopkins Applied Physics Lab (1999-2003) to the startup company MultiGiG (bought by Analog Devices) (2004-2015), to his current job at efabless dot com (2016-present). He operates the website opencircuitdesign dot com.