What you'll learn
- Students will be able to do a real full chip static timing analysis with $0 spent, as designs and tools used in this course are opensource
- Students will be able to appreciate power of opensource EDA tools, like Opentimer used in this course, and help in contributing towards the development
- Students can explore commercial tools with knowledge and concepts from this course, quite easily
- Manage a entire chip timing signoff
Requirements
- Static Timing analysis - part 1 course needs to be fully completed to start this course. No exceptions
- Knowledge of physical design flow and clock tree synthesis will be helpful
Description
In static timing analysis - part 1 course, we introduced you to basic and essential timing checks, like cppr, gba, pba, etc. In this course, we are focusing on application of these concepts on real chip using opensource sta tool called 'Opentimer'. There is an amount of homework needed to make this tool work, but you know what, looking and feeling the power of this opensource tool, you will find the effort is worth taking
Why its worth? Because, you can now analyze your chip at $0 right from your home. Isn't that FREEdom that we have been looking for? In my advanced courses, including this one, the prime focus is on how to analyze complex chips like USB controller or DDR using Opentimer.
Opentimer has been developed by Tsung-Wei Huang and Prof. Martin D. F. Wong in the University of Illinios at Urbana-Champaign (UIUC), IL, USA. It supports important features like PBA, CPPR, block based analysis, and many more.
I am using this tool in this course for explaining the concepts from STA-part 1 and also for some interface analysis that we will be looking in this course.
So, hope you enjoy learning this course in the same way we enjoyed making them.
Happy Learning !!
Who this course is for:
- Anyone who has completed static timing analysis - part 1 course
- Anyone (with 100% static timing analysis - part 1 course completed) who has basic knowledge on flipflops, gates and digital logic
Instructor
Tips on order in which you need to learn VLSI and become a CHAMPION:
If I would had been you, I would had started with Physical Design and Physical design webinar course where I understand the entire flow first, then would have moved to CTS-1 and CTS-2 to look into details of how the clock is been built.
Then, as you all know how crosstalk impacts functioning at lower nodes, I would gone for Signal Integrity course to understand impacts of scaling and fix them. Once I do that, I would want to know how to analyze performance of my design and I would have gone for STA-1, STA-2 and Timing ECO webinar courses, respectively
Once you STA, there’s an internal curiosity which rises, and wants us to understand, what goes inside timing analysis at transistor level. To full-fill that, I would had taken Circuit design and SPICE simulations Part 1 and Part 2 courses.
And finally, to understand pre-placed cells, IP’s and STA in even more detail, I would have taken custom layout course and Library Characterization course
All of above needs to be implemented using a CAD tool and needs to be done faster, for which I would have written TCL or perl scripts. So for that, I would start to learn TCL-Part1 and TCL-Part2 courses, at very beginning or in middle
Finally, if I want to learn RTL and synthesis, from specifications to layout, RISC-V ISA course will teach the best way to define specs for a complex system like microprocessor
Connect with me for more guidance !!
Hope you enjoy the session best of luck for future
Kunal Ghosh is the Director and co-founder of VLSI System Design (VSD) Corp. Pvt. Ltd. Prior to launching VSD in 2017, Kunal held several technical leadership positions at Qualcomm's Test-chip business unit. He joined Qualcomm in 2010. He led the Physical design and STA flow development of 28nm, 16nm test-chips. At 2013, he joined Cadence as Lead Sales Application engineer for Tempus STA tool. Kunal holds a Masters degree in Electrical Engineering from Indian Institute of Technology (IIT), Bombay, India and specialized in VLSI Design & Nanotechnology.
Hands on with Technology @
1) MSM (mobile station mode chips) - MSM chips are used for CDMA modulation/demodulation. It consists of DSP’s and microprocessors for running applications such as web-browsing, video conferencing, multimedia services, etc.
2) Memory test chips - Memory test chips are used to validate functionality of 28nm custom/compiler memory as well as characterize their timing, power and yield.
3) DDR-PHY test chips - DDR-PHY test chips are basically tested for high speed data transfer
4) Timing and physical design Flow development for 130nm MOSFET technology node till 16nm FinFET technology node.
5) “IR aware STA” and “Low power STA”
6) Analyzed STA engine behavior for design size up to 850 million instance count ACADEMIC
1) Research Assistant to Prof. Richard Pinto and Prof. Anil Kottantharayil on “Sub-100nm optimization using Electron Beam Lithography”, which intended to optimize RAITH-150TWO Electron Beam Lithography tool and the process conditions to attain minimum resolution, use the mix-and-match capabilities of the tool for sub-100nm MOSFET fabrication and generate mask plates for feature sizes above 500nm.
2) Research Assistant to with Prof. Madhav Desai, to characterize RTL, generated from C-to-RTL AHIR compiler, in terms of power, performance and area. This was done by passing RTL, generated from AHIR compiler, through standard ASIC tool chain like synthesis and place & route. The resulting netlist out of PNR was characterized using standard software
PUBLICATION
1) “A C-to-RTL Flow as an Energy Efficient Alternative to Embedded Processors in Digital Systems” submitted in the conference “13th Euromicro Conference on Digital System Design, Architectures, Methods and Tools, DSD 2010, 1-3 September 2010, Lille, France”
2) Concurrent + Distributed MMMC STA for 'N' views
3) Signoff Timing and Leakage Optimization On 18M Instance Count Design With 8000 Clocks and Replicated Modules Using Master Clone Methodology With EDI Cockpit
4) Placement-aware ECO Methodology - No Slacking on Slack