100+ Exercises - Unit tests in Python - unittest framework
What you'll learn
- solve 100+ exercises - unittest framework
- deal with real programming problems
- work with documentation and Stack Overflow
- guaranteed instructor support
Course content
- 00:12Info
- Preview02:55
- Preview03:47
- 09:57Google Colab - Intro
- Preview04:07
- 02:56Introduction to Spyder
- 04:39Anaconda installation - Linux
Requirements
- completed 200+ Exercises - Programming in Python - from A to Z
- completed 210+ Exercises - Python Standard Libraries - from A to Z
- completed 150+ Exercises - Object Oriented Programming in Python - OOP
- basic knowledge of unittest framework
Description
------------------------------------------------------------------------------
RECOMMENDED LEARNING PATH
------------------------------------------------------------------------------
200+ Exercises - Programming in Python - from A to Z
210+ Exercises - Python Standard Libraries - from A to Z
150+ Exercises - Object Oriented Programming in Python - OOP
100+ Exercises - Unit tests in Python - unittest framework
100+ Exercises - Python Programming - Data Science - NumPy
100+ Exercises - Python Programming - Data Science - Pandas
100+ Exercises - Python - Data Science - scikit-learn
250+ Exercises - Data Science Bootcamp in Python
------------------------------------------------------------------------------
COURSE DESCRIPTION
------------------------------------------------------------------------------
100+ Exercises - Unit tests in Python - unittest framework
Welcome to the course 100+ Exercises - Unit tests in Python - unittest framework, where you can check your programming skills in Python and unit testing. The course is designed for people who have basic knowledge in Python and unittest framework. It consists of over 100 exercises with solutions.
Unit testing is one of the most popular software testing methods today, so writing unit tests is a must-have skill for any software developer. This is a great test for people who want to become a Python Developer. Exercises are also a good test before the interview. If you're wondering if it's worth taking a step towards unit testing, don't hesitate any longer and take the challenge today.
Who this course is for:
- students who want to learn unit testing
- students who want to improve Python programming skills
- students preparing for an interview
Instructor
EN
Data Scientist/Python Developer/Securities Broker
Founder at e-smartdata[.]org.
A big fan of new technologies, especially in the areas of artificial intelligence, big data and cloud solutions.
A graduate of postgraduate studies at the Polish-Japanese Academy of Information Technology in the field of Computer Science in the Big Data specialization.
A graduate of Master's Degree in Financial and Actuarial Mathematics at the Faculty of Mathematics and Computer Science of the University of Lodz.
Stockbroker license holder with experience in teaching at a university.
Lecturer at the GPW Foundation (technical analysis, behavioral finance and portfolio management).
The main areas of interest are artificial intelligence, machine learning, deep learning and financial markets.
PL
Data Scientist, Securities Broker
Założyciel platformy e-smartdata[.]org
Miłośnik nowych technologii, szczególnie w obszarze sztucznej inteligencji, big data oraz rozwiązań chmurowych.
Absolwent podyplomowych studiów na Polsko-Japońskiej Akademii Technik Komputerowych na kierunku Informatyka, spec. Big Data.
Absolwent studiów magisterskich z matematyki finansowej i aktuarialnej na wydziale Matematyki i Informatyki Uniwersytetu Łódzkiego.
Od 2015 roku posiadacz licencji maklera papierów wartościowych z uprawnieniami do czynności doradztwa inwestycyjnego.
Wykładowca w Fundacji GPW prowadzący szkolenia dla inwestorów z zakresu analizy technicznej, finansów behawioralnych i zasad zarządzania portfelem instrumentów finansowych.
Z doświadczeniem w prowadzeniu zajęć dydaktycznych na wyższej uczelni z przedmiotów związanych z rachunkiem prawdopodobieństwa i statystyką.
Główne obszary zainteresowań to sztuczna inteligencja, uczenie maszynowe, uczenie głębokie i rynki finansowe.