Theoretical aspects of Natural Language Processing

as a prelude to Python programming
Free tutorial
Rating: 4.0 out of 5 (11 ratings)
1,781 students
1hr 57min of on-demand video
English [Auto]

The student will learn the theoretical aspects of natural language processing (NLP).
The student will learn what text mining is.
The student will learn the functionality of the Natural Language Tool Kit (NLTK).
The student will learn the functionality of spacy.
The student will learn how machine learning (ML) fits in with NLP.
The student will learn how deep learning (DL) fits in with NLP.
The student will learn how neural networks fit in with NLP.
The students will learn how classifiers fit in with NLP.


  • There are no prerequisites for this course because it covers theoretical aspects of NLP only.


This course is an introduction to several basic theoretical aspects of natural language processing (NLP). Text mining will be discussed and it will br shown how this technique relates to NLP. An introduction to NLP will discuss how this science is crucial to our current technological world.

Three libraries that cover NLP will be discussed and these libraries are:-

1. Natural language toolkit (NLTK)

2. Spacy

3. Sklearn

NLTK has many functions that are relevant to NLP, to include:-

1. Processing text data

2. Removing frequently used words

3. Sentence tokenisation

4. Word tokenisation

5. Blank line tokenisation

6. Frequency distribution

7. Stop words

8. Unikgrams, bigrams, trigrams, and ngrams

9. Stemming

10. Lemmatisation

11. Part of speech tagging

12. Named entity recognition

13. Chunking

14. Chinking

Spacy is a new library that is concerned with NLP and has several functions to cover this genre including:-

1. Lemmatisation

2. Part of speech tagging

3. Named entity recognition

4. Displacy

5. Pattern matching

Machine learning, deep learning, and neural networks are crucial to NLP because they are needed to make predictions on the text data that is mined.

Sklearn is Python's library that carries out machine learning and it has several methods relating solely to NLP, being:-

1. CountVectorizer

2. TfidfTransformer

3. Cosine similarity

4. TfidfVectorizer

5. HashingVectorizer

6. DictVectorizer

Classifiers will be discussed because they are necessary to carry out sentiment analysis. Although there is a wide range of classifiers that can be used in NLP, the ones that will be discussed in this course are:-

1. Sklearn's LinearSVC

2. NaiveBayes

Who this course is for:

  • This course is intended for any beginning Python developers who have an interest in natural language processing (NLP).


Data Scientist
Tracy Renee
  • 3.8 Instructor Rating
  • 212 Reviews
  • 11,970 Students
  • 12 Courses

I have almost five decades experience in work, to include United States Air Force, the corporate sector,  non profit sectors, and charities. I also have a BA in Computer Studies, a MSc in Finance, and have a Diploma in Accounting through the AAT. My hobbies include data science, creating content on social media, and writing.

Top companies trust Udemy

Get your team access to Udemy's top 25,000+ courses