TensorFlow: Machine Learning e Deep Learning com Python
What you'll learn
- Aprenda na teoria e na prática como construir redes neurais artificiais para resolver problemas reais do dia
- Aprenda os conceitos sobre redes neurais convolucionais, redes neurais recorrentes, autoencoders e redes adversariais generativas
- Avalie e configure os parâmetros de uma rede neural com o TensorFlow
- Desenvolva redes neurais robustas utilizando o TensorFlow
- Construa passo a passo redes neurais aplicadas em problemas de classificação e regressão
- Implemente redes neurais convolucionais para classificar imagens
- Aplique redes neurais recorrentes em séries temporais
- Reduza a dimensionalidade de bases de dados utilizando autoencoders
- Crie novas imagens automaticamente utilizando redes adversariais generativas
Course content
- Preview08:16
- 00:09Mais sobre Inteligência Artificial
- Preview06:47
- 07:47Instalação do Anaconda
- 00:44Problemas de instalação do Anaconda
- 12:31Spyder
- 11:24Jupyter Notebook
- 14:22Introdução ao TensorFlow
- 09:27IMPORTANTE: Atualizações no código fonte
- 00:12Código fonte completo + slides das aulas
Requirements
- O único pré-requisito obrigatório é conhecimento sobre lógica de programação, principalmente estruturas condicionais e de repetição
- Também são necessários conhecimentos sobre instalação de softwares básicos, porém, durante o curso será mostrado o processo de instalação das ferramentas utilizadas durante todo o curso
- Conhecimentos em Python não são obrigatórios, sendo possível acompanhar o curso sem saber essa linguagem com profundidade
- Conhecimentos em Machine Learning, Redes Neurais ou Inteligência Artificial não são obrigatórios. No final do curso existe um apêndice com várias aulas básicas sobre esses assuntos caso seja seu primeiro contato com a área
Description
A área de Deep Learning (Aprendizagem Profunda) está relacionada a aplicação das redes neurais artificiais na resolução de problemas complexos e que requerem artifícios computacionais avançados. Existem diversas aplicações práticas que já foram construídas utilizando essas técnicas, tais como: carros autônomos, descoberta de novos medicamentos, cura e diagnóstico antecipado de doenças, geração automática de notícias, reconhecimento facial, recomendação de produtos, previsão dos valores de ações na bolsa de valores e até mesmo a geração automática de roteiros de filmes! Nesses exemplos, a técnica base utilizada são as redes neurais artificiais, que procuram "imitar" como o cérebro humano funciona e são consideradas hoje em dia como as mais avançadas no cenário de Machine Learning (Aprendizagem de Máquina). E a maioria dessas aplicações foram desenvolvidas utilizando a biblioteca TensorFlow do Google, que hoje em dia é a ferramenta mais popular e utilizada nesse cenário. Por isso, é de suma importância que profissionais ligados à área de Inteligência Artificial e Machine Learning saibam como trabalhar com essa biblioteca, já que várias grandes empresas a utilizam em seus sistemas, tais como: Airbnd, Airbus, eBay, Dropbox, Intel, IBM, Uber, Twitter, Snapchat e também o próprio Google!
A área de Deep Learning é atualmente um dos campos de trabalho mais relevantes da Inteligência Artificial, sendo que o mercado de trabalho dessa área nos Estados Unidos e em vários países da Europa está em grande ascensão; e a previsão é que no Brasil cada vez mais esse tipo de profissional seja requisitado! Inclusive alguns estudos apontam que o conhecimento dessa área será em breve um pré-requisito para os profissionais de Tecnologia da Informação!
E para levar você até essa área, neste curso você terá uma visão teórica e principalmente prática sobre as principais e mais modernas técnicas de Deep Learning utilizando o TensorFlow e o Python! Ao final você terá todas as ferramentas necessárias para construir soluções complexas e que podem ser aplicadas em problemas do dia-a-dia das empresas! Para isso, o conteúdo está dividido em sete partes: introdução prática ao TensorFlow, regressão e classificação, redes neurais artificiais, redes neurais convolucionais, redes neurais recorrentes, autoencoders e redes adversariais generativas. Você aprenderá a teoria básica sobre cada um desses assuntos, bem como implementará exemplos práticos passo a passo aplicado em cenários reais. Abordaremos dois tipos de programação com o TensorFlow: utilizando a Low Level e a High Level API. Na primeira faremos a codificação manualmente e definiremos as fórmulas matemáticas, enquanto que na segunda usaremos classes prontas para a implementação!
Veja abaixo alguns dos projetos que serão desenvolvidos:
Previsão do preço de casas baseado nas características da casa
Classificação de tipos de plantas
Classificação da faixa salarial de pessoas
Classificação de dígitos escritos a mão (visão computacional)
Construção de série temporal para previsão de preços de ações
Redução de dimensionalidade em imagens
Criação automática de imagens
Ao final de cada seção teórica você tem questionários para revisar o conteúdo, bem como indicações de referências complementares caso você queira aprender mais sobre os assuntos.
Importante: as aulas foram gravadas utilizando o TensorFlow 1.x, porém, o código fonte está totalmente atualizado para a versão 2.x do TensorFlow!
Este curso é indicado para todos os níveis, ou seja, caso seja seu primeiro contato com Deep Learning e o TensorFlow, você conta com um apêndice que contém aulas básicas sobre aprendizagem de máquina e redes neurais! É também importante enfatizar que o único pré-requisito necessário é saber lógica de programação, pois mesmo se você não seja especialista na linguagem Python você conseguirá acompanhar o curso sem nenhum problema!
Preparado(a) para dar um importante passo na sua carreira? Aguardo você no curso! :)
Who this course is for:
- Pessoas interessadas em iniciar seus estudos em deep learning (aprendizagem profunda)
- Pessoas interessadas em conhecer o funcionamento do TensorFlow do Google
- Pessoas interessadas em redes neurais artificiais, convolucionais, recorrentes, autoencoders e redes adversariais generativas
- Pessoas interessadas em iniciar uma carreira em Ciência de Dados utilizando técnicas modernas de aprendizagem de máquina
- Empreendedores que queiram aplicar aprendizagem de máquina em projetos comerciais
- Analistas de dados que queiram aumentar seu conhecimento na área de deep learning (aprendizagem profunda)
- Empresários que desejam criar soluções eficientes para problemas reais em suas empresas
- Alunos de graduação que estão estudando disciplinas ligadas a área de Inteligência Artificial
Instructors
Olá! Meu nome é Jones Granatyr e já trabalho em torno de 10 anos com Inteligência Artificial (IA), inclusive fiz o meu mestrado e doutorado nessa área. Atualmente sou professor, pesquisador e fundador do portal IA Expert, um site com conteúdo específico sobre Inteligência Artificial. Desde que iniciei na Udemy criei vários cursos sobre diversos assuntos de IA, como por exemplo: Deep Learning, Machine Learning, Data Science, Redes Neurais Artificiais, Algoritmos Genéticos, Detecção e Reconhecimento Facial, Algoritmos de Busca, Mineração de Textos, Buscas em Textos, Mineração de Regras de Associação, Sistemas Especialistas e Sistemas de Recomendação. Os cursos são abordados em diversas linguagens de programação (Python, R e Java) e com várias ferramentas/tecnologias (tensorflow, keras, pandas, sklearn, opencv, dlib, weka, nltk, por exemplo). Meu principal objetivo é desmistificar a área de IA e ajudar profissionais de TI a entenderem como essa tecnologia pode ser utilizada na prática e que possam visualizar novas oportunidades de negócios.
A plataforma IA Expert tem o objetivo de trazer cursos teóricos e práticos de fácil entendimento sobre sobre Inteligência Artificial e Ciência de Dados, para que profissionais de todas as áreas consigam entender e aplicar os benefícios que a IA pode trazer para seus negócios, bem como apresentar todas as oportunidades que essa área pode trazer para profissionais de tecnologia da informação. Também trazemos notícias atualizadas semanais sobre a área em nosso portal.