Intro to Deep Learning project in TensorFlow 2.x and Python
What you'll learn
- TensorFlow 2.0
- Gradient Descent Algorithm
- Create Pipeline regression model in TensorFlow
- Lasso Regression
- Feature Selection with lasso
- Programming in TensorFlow 2.0
- Selection of Penalty factor lambda
- Visualizing graph in TensorBoard
- Neuron or Perceptron Model Architecture
- Loss or Cost Function
- TensorFlow Keras API
- Linear Regression
- Create customized model in TensorFlow
- Exploratory Data Analysis
- Data Preprocessing
- Multiple Linear Regression in TensorFlow
Requirements
- Beginner to Python
Description
Welcome to the Course Introduction to Deep Learning with TensorFlow 2.0:
In this course, you will learn advanced linear regression technique process and with this, you can be able to build any regression problem. Using this you can solve real-world problems like customer lifetime value, predictive analytics, etc.
What you will Learn
· TensorFlow 2.x
· Google Colab
· Linear Regression
· Gradient Descent Algorithm
· Data Analysis
· Regression
· Feature Engineering and Selection with Lasso Regression.
· Model Evaluation
All the above-mentioned techniques are explained in TensorFlow. In this course, you will work on the Project Customer Revenue (Lifetime value) Prediction using Gradient Descent Algorithm
Problem Statement: A large child education toy company that sells educational tablets and gaming systems both online and in retail stores wanted to analyze the customer data. The goal of the problem is to determine the following objective as shown below.
1. Data Analysis & Pre-processing: Analyse customer data and draw the insights w.r.t revenue and based on the insights we will do data pre-processing. In this module, you will learn the following.
1. Necessary Data Analysis
2. Multi-collinearity
3. Factor Analysis
2. Feature Engineering:
1. Lasso Regression
2. Identify the optimal penalty factor.
3. Feature Selection
3. Pipeline Model
4. Evaluation
We will start with the basics of TensorFlow 2.x to advanced techniques in it. Then we drive into intuition behind linear regression and optimization function like gradient descent.
Who this course is for:
- Anyone who want to build and train their own network
- Curious of data science
- Who want to learning Deep Learning
Instructors
Hi,
We're team of Machine Learning experts, AI developers working together to advance the state of the art in artificial intelligence. You will be hearing from us when new courses are released, answering Q&A and many more.
We are here to help you stay on the cutting edge of Data Science and Technology.
Thanks,
Data Science Anywhere Team
Sudhir is an experienced Data Scientist with a demonstrated history of working in the information technology and services industry. Skilled in Machine Learning, Deep Learning, Statistical algorithms he mostly worked on Image Processing and Natural Language processing application. He also successfully deployed many data science-related projects in cloud platforms as a service. Strong engineering professional with a Bachelor's degree focused on Electrical and Electronics Engineering.
I am Srikanth working as Data Science with a demonstrated history of working in the information technology and services industry. Skilled in Machine Learning, Deep Learning, Statistical algorithms. We mostly worked on Image Processing and Natural Language processing application. I also successfully deployed many data science-related projects in cloud platforms as a service in AWS, Google Cloud, etc.