Udemy
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
Development
Web Development Data Science Mobile Development Programming Languages Game Development Database Design & Development Software Testing Software Engineering Software Development Tools No-Code Development
Business
Entrepreneurship Communication Management Sales Business Strategy Operations Project Management Business Law Business Analytics & Intelligence Human Resources Industry E-Commerce Media Real Estate Other Business
Finance & Accounting
Accounting & Bookkeeping Compliance Cryptocurrency & Blockchain Economics Finance Finance Cert & Exam Prep Financial Modeling & Analysis Investing & Trading Money Management Tools Taxes Other Finance & Accounting
IT & Software
IT Certifications Network & Security Hardware Operating Systems & Servers Other IT & Software
Office Productivity
Microsoft Apple Google SAP Oracle Other Office Productivity
Personal Development
Personal Transformation Personal Productivity Leadership Career Development Parenting & Relationships Happiness Esoteric Practices Religion & Spirituality Personal Brand Building Creativity Influence Self Esteem & Confidence Stress Management Memory & Study Skills Motivation Other Personal Development
Design
Web Design Graphic Design & Illustration Design Tools User Experience Design Game Design 3D & Animation Fashion Design Architectural Design Interior Design Other Design
Marketing
Digital Marketing Search Engine Optimization Social Media Marketing Branding Marketing Fundamentals Marketing Analytics & Automation Public Relations Paid Advertising Video & Mobile Marketing Content Marketing Growth Hacking Affiliate Marketing Product Marketing Other Marketing
Lifestyle
Arts & Crafts Beauty & Makeup Esoteric Practices Food & Beverage Gaming Home Improvement & Gardening Pet Care & Training Travel Other Lifestyle
Photography & Video
Digital Photography Photography Portrait Photography Photography Tools Commercial Photography Video Design Other Photography & Video
Health & Fitness
Fitness General Health Sports Nutrition & Diet Yoga Mental Health Martial Arts & Self Defense Safety & First Aid Dance Meditation Other Health & Fitness
Music
Instruments Music Production Music Fundamentals Vocal Music Techniques Music Software Other Music
Teaching & Academics
Engineering Humanities Math Science Online Education Social Science Language Learning Teacher Training Test Prep Other Teaching & Academics
Web Development JavaScript React Angular CSS Node.Js PHP HTML5 Vue JS
AWS Certification Microsoft Certification AWS Certified Solutions Architect - Associate AWS Certified Cloud Practitioner CompTIA A+ Amazon AWS Cisco CCNA Microsoft AZ-900 AWS Certified Developer - Associate
Microsoft Power BI SQL Tableau Data Modeling Business Analysis Business Intelligence MySQL Qlik Sense Blockchain
Unity Unreal Engine Game Development Fundamentals C# 3D Game Development C++ Unreal Engine Blueprints 2D Game Development Virtual Reality
Google Flutter Android Development iOS Development React Native Swift Dart (programming language) Mobile App Development Kotlin SwiftUI
Graphic Design Photoshop Adobe Illustrator Drawing Digital Painting Canva InDesign Character Design Procreate Digital Illustration App
Life Coach Training Neuro-Linguistic Programming Personal Development Personal Transformation Life Purpose Mindfulness Meditation Sound Therapy CBT Cognitive Behavioral Therapy
Entrepreneurship Fundamentals Business Fundamentals Freelancing Business Strategy Startup Business Plan Online Business Blogging Home Business
Digital Marketing Social Media Marketing Marketing Strategy Internet Marketing Google Analytics Copywriting Email Marketing YouTube Marketing Podcasting

Teaching & AcademicsHumanitiesStatistics

Master statistics & machine learning: intuition, math, code

A rigorous and engaging deep-dive into statistics and machine-learning, with hands-on applications in Python and MATLAB.
Highest rated
Rating: 4.7 out of 54.7 (1,219 ratings)
13,607 students
Created by Mike X Cohen
Last updated 5/2022
English
English [Auto]

What you'll learn

  • Descriptive statistics (mean, variance, etc)
  • Inferential statistics
  • T-tests, correlation, ANOVA, regression, clustering
  • The math behind the "black box" statistical methods
  • How to implement statistical methods in code
  • How to interpret statistics correctly and avoid common misunderstandings
  • Coding techniques in Python and MATLAB/Octave
  • Machine learning methods like clustering, predictive analysis, classification, and data cleaning

Requirements

  • Good work ethic and motivation to learn.
  • Previous background in statistics or machine learning is not necessary.
  • Python -OR- MATLAB with the Statistics toolbox (or Octave).
  • Some coding familiarity for the optional code exercises.
  • No textbooks necessary! All materials are provided inside the course.

Description

Statistics and probability control your life. I don't just mean What YouTube's algorithm recommends you to watch next, and I don't just mean the chance of meeting your future significant other in class or at a bar. Human behavior, single-cell organisms, Earthquakes, the stock market, whether it will snow in the first week of December, and countless other phenomena are probabilistic and statistical. Even the very nature of the most fundamental deep structure of the universe is governed by probability and statistics.

You need to understand statistics.

Nearly all areas of human civilization are incorporating code and numerical computations. This means that many jobs and areas of study are based on applications of statistical and machine-learning techniques in programming languages like Python and MATLAB. This is often called 'data science' and is an increasingly important topic. Statistics and machine learning are also fundamental to artificial intelligence (AI) and business intelligence.

If you want to make yourself a future-proof employee, employer, data scientist, or researcher in any technical field -- ranging from data scientist to engineering to research scientist to deep learning modeler -- you'll need to know statistics and machine-learning. And you'll need to know how to implement concepts like probability theory and confidence intervals, k-means clustering and PCA, Spearman correlation and logistic regression, in computer languages like Python or MATLAB.

There are six reasons why you should take this course:

  • This course covers everything you need to understand the fundamentals of statistics, machine learning, and data science, from bar plots to ANOVAs, regression to k-means, t-test to non-parametric permutation testing.

  • After completing this course, you will be able to understand a wide range of statistical and machine-learning analyses, even specific advanced methods that aren't taught here. That's because you will learn the foundations upon which advanced methods are build.

  • This course balances mathematical rigor with intuitive explanations, and hands-on explorations in code.

  • Enrolling in the course gives you access to the Q&A, in which I actively participate every day.

  • I've been studying, developing, and teaching statistics for 20 years, and I'm, like, really great at math.

What you need to know before taking this course:

  • High-school level maths. This is an applications-oriented course, so I don't go into a lot of detail about proofs, derivations, or calculus.

  • Basic coding skills in Python or MATLAB. This is necessary only if you want to follow along with the code. You can successfully complete this course without writing a single line of code! But participating in the coding exercises will help you learn the material. The MATLAB code relies on the Statistics and Machine Learning toolbox (you can use Octave if you don't have MATLAB or the statistics toolbox). Python code is written in Jupyter notebooks.

  • I recommend taking my free course called "Statistics literacy for non-statisticians". It's 90 minutes long and will give you a bird's-eye-view of the main topics in statistics that I go into much much much more detail about here in this course. Note that the free short course is not required for this course, but complements this course nicely. And you can get through the whole thing in less than an hour if you watch if on 1.5x speed!

  • You do not need any previous experience with statistics, machine learning, deep learning, or data science. That's why you're here!

Is this course up to date?

Yes, I maintain all of my courses regularly. I add new lectures to keep the course "alive," and I add new lectures (or sometimes re-film existing lectures) to explain maths concepts better if students find a topic confusing or if I made a mistake in the lecture (rare, but it happens!).

You can check the "Last updated" text at the top of this page to see when I last worked on improving this course!

What if you have questions about the material?

This course has a Q&A (question and answer) section where you can post your questions about the course material (about the maths, statistics, coding, or machine learning aspects). I try to answer all questions within a day. You can also see all other questions and answers, which really improves how much you can learn! And you can contribute to the Q&A by posting to ongoing discussions.

And, you can also post your code for feedback or just to show off -- I love it when students actually write better code than mine! (Ahem, doesn't happen so often.)

What should you do now?

First of all, congrats on reading this far; that means you are seriously interested in learning statistics and machine learning. Watch the preview videos, check out the reviews, and, when you're ready, invest in your brain by learning from this course!

Who this course is for:

  • Students taking statistics or machine learning courses
  • Professionals who need to learn statistics and machine learning
  • Scientists who want to understand their data analyses
  • Anyone who wants to see "under the hood" of machine learning
  • Artificial intelligence (AI) students
  • Business intelligence students

Featured review

Chyanit Singh
Chyanit S.
64 courses
19 reviews
Rating: 5.0 out of 5a year ago
This is a great course and it provides a solid foundation for anyone wanting to become a data scientist. Mike has done an awesome job teaching the most difficult concepts in such a simplified manner. I highly recommend this course to anyone wanting to become a data scientist in the future. The course content is awesome and I am sure on finishing this course one will have a clear cut advantage when pursuing higher studies

Instructor

Mike X Cohen
Neuroscientist, writer, professor
Mike X Cohen
  • 4.6 Instructor Rating
  • 31,887 Reviews
  • 163,299 Students
  • 22 Courses

I am a neuroscientist (brain scientist) and associate professor at the Radboud University in the Netherlands. I have an active research lab that has been funded by the US, German, and Dutch governments, European Union, hospitals, and private organizations.

But you're here because of my teaching, so let me tell you about that: 

I have 20 years of experience teaching programming, data analysis, signal processing, statistics, linear algebra, and experiment design. I've taught undergraduate students, PhD candidates, postdoctoral researchers, and full professors. I teach in "traditional" university courses, special week-long intensive courses, and Nobel prize-winning research labs. I have >80 hours of online lectures on neuroscience data analysis that you can find on my website and youtube channel. And I've written several technical books about these topics with a few more on the way.

I'm not trying to show off -- I'm trying to convince you that you've come to the right place to maximize your learning from an instructor who has spent two decades refining and perfecting his teaching style.

Over 120,000 students have watched over 7,500,000 minutes of my courses. Come find out why!

I have several free courses that you can enroll in. Try them out! You got nothing to lose ;)

                                                  -------------------------

By popular request, here are suggested course progressions for various educational goals:

MATLAB programming: MATLAB onramp; Master MATLAB; Image Processing

Python programming: Master Python programming by solving scientific projects; Master Math by Coding in Python

Applied linear algebra: Complete Linear Algebra; Dimension Reduction

Signal processing: Understand the Fourier Transform; Generate and visualize data; Signal Processing; Neural signal processing

Top companies choose Udemy Business to build in-demand career skills.
NasdaqVolkswagenBoxNetAppEventbrite
  • Udemy Business
  • Teach on Udemy
  • Get the app
  • About us
  • Contact us
  • Careers
  • Blog
  • Help and Support
  • Affiliate
  • Investors
  • Impressum Kontakt
  • Terms
  • Privacy policy
  • Cookie settings
  • Sitemap
  • Accessibility statement
Udemy
© 2022 Udemy, Inc.