SQL Bootcamp - Hands-On Exercises - SQLite - Part II
What you'll learn
- solve over 150 exercises in SQL and databases
- test yourself in DDL (Data Definition Language) and DML (Data Manipulation Language)
- test yourself in creating tables
- test yourself in defining column/table constraints
- test yourself in working with master and foreign keys
- test yourself in inserting, modifying and deleting records
- test yourself in creating views, triggers
- work with documentation and Stack Overflow
- deal with real programming problems
- guaranteed instructor support
Course content
- 00:02Tip
Requirements
- completed SQL Bootcamp - Hands-On Exercises - SQLite - Part I
- basic knowledge of SQL
- internet access
Description
------------------------------------------------------------------------------
RECOMMENDED LEARNING PATH
------------------------------------------------------------------------------
200+ Exercises - Programming in Python - from A to Z
210+ Exercises - Python Standard Libraries - from A to Z
150+ Exercises - Object Oriented Programming in Python - OOP
100+ Exercises - Unit tests in Python - unittest framework
100+ Exercises - Python Programming - Data Science - NumPy
100+ Exercises - Python Programming - Data Science - Pandas
100+ Exercises - Python - Data Science - scikit-learn
250+ Exercises - Data Science Bootcamp in Python
SQL Bootcamp - Hands-On Exercises - SQLite - Part I
SQL Bootcamp - Hands-On Exercises - SQLite - Part II
------------------------------------------------------------------------------
COURSE DESCRIPTION
------------------------------------------------------------------------------
SQL Bootcamp - Hands-On Exercises - SQLite - Part II
Welcome to the course SQL Bootcamp - Hands-On Exercises - SQLite - Part II, where you can test your SQL programming skills.
This is the second part of the SQL Bootcamp - Hands-On Exercises series. The exercises in this part are mainly focused on creating DDL and DML queries to the database.
The course is designed for people who have basic knowledge in SQL and it consists of over 150 exercises with solutions.
This is a great test for people who are learning SQL and are looking for new challenges. Exercises are also a good test before the interview.
Knowledge of SQL is one of the most desirable technical skills on the job market. If you're wondering if it's worth taking a step towards SQL and databases, don't hesitate any longer and take the challenge today.
Who this course is for:
- everyone who wants to test knowledge of SQL and databases
- everyone who wants to learn by doing
- web developers
- mobile developers
- data analysts
- data scientists
Instructor
EN
Data Scientist/Python Developer/Securities Broker
Founder at e-smartdata[.]org.
A big fan of new technologies, especially in the areas of artificial intelligence, big data and cloud solutions.
A graduate of postgraduate studies at the Polish-Japanese Academy of Information Technology in the field of Computer Science in the Big Data specialization.
A graduate of Master's Degree in Financial and Actuarial Mathematics at the Faculty of Mathematics and Computer Science of the University of Lodz.
Stockbroker license holder with experience in teaching at a university.
Lecturer at the GPW Foundation (technical analysis, behavioral finance and portfolio management).
The main areas of interest are artificial intelligence, machine learning, deep learning and financial markets.
PL
Data Scientist, Securities Broker
Założyciel platformy e-smartdata[.]org
Miłośnik nowych technologii, szczególnie w obszarze sztucznej inteligencji, big data oraz rozwiązań chmurowych.
Absolwent podyplomowych studiów na Polsko-Japońskiej Akademii Technik Komputerowych na kierunku Informatyka, spec. Big Data.
Absolwent studiów magisterskich z matematyki finansowej i aktuarialnej na wydziale Matematyki i Informatyki Uniwersytetu Łódzkiego.
Od 2015 roku posiadacz licencji maklera papierów wartościowych z uprawnieniami do czynności doradztwa inwestycyjnego.
Wykładowca w Fundacji GPW prowadzący szkolenia dla inwestorów z zakresu analizy technicznej, finansów behawioralnych i zasad zarządzania portfelem instrumentów finansowych.
Z doświadczeniem w prowadzeniu zajęć dydaktycznych na wyższej uczelni z przedmiotów związanych z rachunkiem prawdopodobieństwa i statystyką.
Główne obszary zainteresowań to sztuczna inteligencja, uczenie maszynowe, uczenie głębokie i rynki finansowe.