Data Processing with Python
What you'll learn
- Build 10 advanced Python scripts which together make up a data analysis and visualization program.
- Solve six exercises related to processing, analyzing and visualizing US income data with Python.
- Learn the fundamental blocks of the Python programming language such as variables, datatypes, loops, conditionals, functions and more.
- Use Python to batch download files from FTP sites, extract, rename and store remote files locally.
- Import data into Python for analysis and visualization from various sources such as CSV and delimited TXT files.
- Keep the data organized inside Python in easily manageable pandas dataframes.
- Merge large datasets taken from various data file formats.
- Create pivot tables in Python out of large datasets.
- Perform various operations among data columns and rows.
- Query data from Python pandas dataframes.
- Export data from Python into various formats such as TXT, CSV, Excel, HTML and more.
- Use Python to perform various visualizations such as time series, plots, heatmaps, and more.
- Create KML Google Earth files out of CSV files.
Course content
- Preview08:06
- 03:21Python editors - Spyder and iPython
Requirements
- A working computer (Windows, Mac, or Linux)
- No prior knowledge of Python is required
Description
Data scientists spend only 20 percent of their time on building machine learning algorithms and 80 percent of their time finding, cleaning, and reorganizing huge amounts of data. That mostly happen because many use graphical tools such as Excel to process their data. However, if you use a programming language such as Python you can drastically reduce the time it takes for processing your data and make them ready for use in your project. This course will show how Python can be used to manage, clean, and organize huge amounts of data.
This course assumes you have basic knowledge of variables, functions, for loops, and conditionals. In the course you will be given access to a million records of raw historical weather data and you will use Python in every single step to deal with that dataset. That includes learning how to use Python to batch download and extract the data files, load thousands of files in Python via pandas, cleaning the data, concatenating and joining data from different sources, converting between fields, aggregating, conditioning, and many more data processing operations. On top of that, you will also learn how to calculate statistics and visualize the final data. The course also covers a series of exercises where you will be given some sample data then practice what you learned by cleaning and reorganizing those data using Python.
Who this course is for:
- Those who come from any technology field that deals with any kind of data.
- Those who want to leverage the power of the Python programming language for handling data.
- Those who need to learn Python basics and want to quickly advance their skills by learning how to perform data cleaning, analysis and visualization with Python - all in one single course.
- Those who want to switch from programming languages such as Java, C, R, Matlab, etc. to Python.
Instructor
Hi, I am Ardit! I am a Python programmer and teacher. I graduated in 2013 with a Master of Science in Geospatial Technologies from the University of Muenster in Germany.
I have worked with companies from various countries both as an employee and self-employed using Python together with companies such as the Center for Conservation Geography to map and understand Australian ecosystems, processing orthophotos with the Swiss in-Terra, and performing data mining to gain business insights with the Australian Rapid Intelligence. I am also the founder and author of PythonHow, a Python learning resource designed particularly for people with no previous programming experience.
If you are interested in Python, I would suggest the following roadmap to becoming a Python developer.
Start by taking my course, The Python Mega Course: Build 10 Real World Applications and then take my other course, The Python Pro Course: Build 10 Real World OOP Programs. Both courses are listed here on my profile page. Both courses are designed around learning Python by practice rather than rote memorization.
The mega course will guide you step by step, starting with Python basics and all the way to building real-world Python programs, including GUIs, web apps, web scrapers, mobile apps, etc. Once you complete that course, take the other one.
The pro course will take you to a new professional level, teaching you Python from a deeper computer science perspective, covering programming logic, and giving you the skills for building complex, professional applications in an object-oriented programming (OOP) style. After you complete the second course, you can practice Python even further by remaking the 10 apps of the first mega course, but this time in OOP style. If you can manage to do that, you will be job-ready.