Udemy
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
Development
Web Development Data Science Mobile Development Programming Languages Game Development Database Design & Development Software Testing Software Engineering Software Development Tools No-Code Development
Business
Entrepreneurship Communication Management Sales Business Strategy Operations Project Management Business Law Business Analytics & Intelligence Human Resources Industry E-Commerce Media Real Estate Other Business
Finance & Accounting
Accounting & Bookkeeping Compliance Cryptocurrency & Blockchain Economics Finance Finance Cert & Exam Prep Financial Modeling & Analysis Investing & Trading Money Management Tools Taxes Other Finance & Accounting
IT & Software
IT Certifications Network & Security Hardware Operating Systems & Servers Other IT & Software
Office Productivity
Microsoft Apple Google SAP Oracle Other Office Productivity
Personal Development
Personal Transformation Personal Productivity Leadership Career Development Parenting & Relationships Happiness Esoteric Practices Religion & Spirituality Personal Brand Building Creativity Influence Self Esteem & Confidence Stress Management Memory & Study Skills Motivation Other Personal Development
Design
Web Design Graphic Design & Illustration Design Tools User Experience Design Game Design 3D & Animation Fashion Design Architectural Design Interior Design Other Design
Marketing
Digital Marketing Search Engine Optimization Social Media Marketing Branding Marketing Fundamentals Marketing Analytics & Automation Public Relations Paid Advertising Video & Mobile Marketing Content Marketing Growth Hacking Affiliate Marketing Product Marketing Other Marketing
Lifestyle
Arts & Crafts Beauty & Makeup Esoteric Practices Food & Beverage Gaming Home Improvement & Gardening Pet Care & Training Travel Other Lifestyle
Photography & Video
Digital Photography Photography Portrait Photography Photography Tools Commercial Photography Video Design Other Photography & Video
Health & Fitness
Fitness General Health Sports Nutrition & Diet Yoga Mental Health Martial Arts & Self Defense Safety & First Aid Dance Meditation Other Health & Fitness
Music
Instruments Music Production Music Fundamentals Vocal Music Techniques Music Software Other Music
Teaching & Academics
Engineering Humanities Math Science Online Education Social Science Language Learning Teacher Training Test Prep Other Teaching & Academics
Web Development JavaScript React Angular CSS Node.Js PHP HTML5 Vue JS
AWS Certification Microsoft Certification AWS Certified Solutions Architect - Associate AWS Certified Cloud Practitioner CompTIA A+ Amazon AWS Cisco CCNA CompTIA Security+ Microsoft AZ-900
Microsoft Power BI SQL Tableau Data Modeling Business Analysis Business Intelligence MySQL Qlik Sense Data Analysis
Unity Unreal Engine Game Development Fundamentals C# 3D Game Development C++ Unreal Engine Blueprints 2D Game Development Mobile Game Development
Google Flutter iOS Development Android Development Swift React Native Dart (programming language) Kotlin Mobile App Development SwiftUI
Graphic Design Photoshop Adobe Illustrator Drawing Digital Painting Canva InDesign Character Design Procreate Digital Illustration App
Life Coach Training Neuro-Linguistic Programming Personal Development Personal Transformation Life Purpose Mindfulness Sound Therapy Meditation Coaching
Business Fundamentals Entrepreneurship Fundamentals Freelancing Business Strategy Startup Business Plan Online Business Blogging Leadership
Digital Marketing Social Media Marketing Marketing Strategy Internet Marketing Google Analytics Email Marketing Copywriting YouTube Marketing Startup

DevelopmentData Science

Python Data Science with the TCLab

Data science introduction for scientists and engineers
Rating: 4.5 out of 54.5 (8 ratings)
1,057 students
Created by John Hedengren
Last updated 1/2022
English
English [Auto]

What you'll learn

  • Visualize data to understand relationships and assess data quality
  • Understand the differences between classification, regression, and clustering and when each can be applied
  • Detect overfitting and implement strategies to improve prediction
  • Understand engineering and business objectives to plan applications
  • Implement data science techniques successfully to complete a project

Requirements

  • Beginner Python experience is needed.
  • Consider the freely available course found on GitHub: APMonitor/begin_python to gain foundational experience with variables, loops, functions, lists, and other Python introductory topics.

Description

These modules are intended to help you develop data science and machine learning skills in Python. The 12 modules have video tutorials for each exercise with solutions for each exercise. One of the unique things about these modules is that you work on basic elements and then test your knowledge with real data exercises with a heat transfer design project. You will see your Python code have a real impact by designing the materials for a new product.

One of the best ways to start or review a programming language is to work on a project. These exercises are designed to teach data science Python programming skills. Data science applications are found across almost all industries where raw data is transformed into actionable information that drives scientific discovery, business innovations, and development. This project is to determine the thermal conductivity of several materials. Thermal conductivity is how well a material conducts or insulates against heat transfer. The specific heat transfer project shows how to apply data science to solve an important problems with methods that are applicable to many different applications.

Objective: Collect and analyze data from the TCLab to determine the thermal conductivity of three materials (metal, plastic, and cardboard) that are placed between two temperature sensors. Create a digital twin that predicts heat transfer and temperature.

To make the problem more applicable to a real situation, suppose that you are designing a next-generation cell phone. The battery and processor on the cell phone generate a lot of heat. You want to make sure that the material between them will prevent over-heating of the battery by the processor. This study will help you answer questions about material properties for predicting the temperature of the battery and processor.

Topics

There are 12 lessons to help you with the objective of learning data science in Python. The first thing that you will need is to install Python to open and run the IPython notebook files in Jupyter. There are additional instructions on how to install Python and manage modules. Any Python distribution or Integrated Development Environment (IDE) can be used (IDLE, Spyder, PyCharm, and others) but Jupyter notebook or VSCode is required to open and run the IPython notebook (.ipynb) files. All of the IPython notebook (.ipynb) files can be downloaded. Don't forget to unzip the folder (extract the archive) and copy it to a convenient location before starting.

  1. Overview

  2. Data Import and Export

  3. Data Analysis

  4. Visualize Data

  5. Prepare (Cleanse, Scale, Divide) Data

  6. Regression

  7. Features

  8. Classification

  9. Interpolation

  10. Solve Equations

  11. Differential Equations

  12. Time Series

They give the skills needed to work on the final project. In the final project, metal coins, plastic, and cardboard are inserted in between the two heaters so that there is a conduction path for heat between the two sensors. The temperature difference and temperature levels are affected by the ability of the material to conduct heat from heater 1 and temperature sensor T1 to the other temperature sensor T2.

You may not always know how to solve the problems initially or how to construct the algorithms. You may not know the function that you need or the name of the property associated with an object. This is by design. You are to search out the information that you might need using help resources, online resources, textbooks, etc.

You will be assessed not only on the ability of the program to give the correct output, but also on good programming practices such as ease of use, code readability and simplicity, modular programming, and adequate, useful comments. Just remember that comments, indentation, and modular programming can really help you and others when reviewing your code.

Temperature Control Lab

The projects are a review of all course material with real data from temperature sensors in the Temperature Control Lab (TCLab). The temperatures are adjusted with heaters that are adjusted with the TCLab. If you do not have a TCLab module, use the digital twin simulator by replacing TCLab() with TCLabModel().

Who this course is for:

  • Beginner Python developers interested in Data Science
  • Aspiring and experienced scientists and engineers
  • Students and professionals who want to adopt Data Science in practice

Instructor

John Hedengren
Engineering Professor
John Hedengren
  • 4.5 Instructor Rating
  • 8 Reviews
  • 1,057 Students
  • 1 Course

Dr. John Hedengren is an Associate Professor at Brigham Young University in the Chemical Engineering Department. He leads the BYU Process Research and Intelligent Systems Modeling (PRISM) group with a current focus on structured machine learning for optimization of energy systems, unmanned aircraft, and drilling. Prior to BYU he worked in industry for 7 years on nonlinear estimation and predictive control for polymers. His work includes the APMonitor Optimization Suite with a recent extension to the Python GEKKO language. He led the development of the Arduino-based Temperature Control Lab that is currently used by 70 universities for process control education. His 60 publications span topics of oil production, drilling automation, smart grid optimization, unmanned aerial systems, and nonlinear predictive control.

His professional service includes an appointment as an adjunct professor at the University of Utah, and member of the AIChE CAST Executive Committee (Webinar Editor). In 2005, he received a Ph.D. (Ch.E.) from the University of Texas at Austin for contributions to control and estimation of large-scale dynamic systems. He served as a Society of Petroleum Engineers (SPE) Distinguished Lecturer for 2018-2019, visiting 22 local sections to deliver a presentation on "Drilling Automation and Downhole Monitoring with Physics-based Models". He completed a sabbatical in 2020 to collaboratively develop combined physics-based and machine learned methods for optimization and automation.

Prof. Hedengren has consulting experience with Facebook, Apache, ENI Petroleum, HESS, SABIC Ibn Zahr, TOTAL, and other companies on machine learning and automation solutions. He worked full-time for 5 years with ExxonMobil supporting advanced control and optimization solutions. Automation software that he developed has been applied in over 100 industrial applications world-wide in refineries, chemical plants, and offshore oil platforms.

Top companies choose Udemy Business to build in-demand career skills.
NasdaqVolkswagenBoxNetAppEventbrite
  • Udemy Business
  • Teach on Udemy
  • Get the app
  • About us
  • Contact us
  • Careers
  • Blog
  • Help and Support
  • Affiliate
  • Investors
  • Impressum Kontakt
  • Terms
  • Privacy policy
  • Cookie settings
  • Sitemap
  • Accessibility statement
Udemy
© 2022 Udemy, Inc.