Practical SAS Visual Analytics

SAS Visual Analytics
Rating: 4.1 out of 5 (227 ratings)
5,602 students
Practical SAS Visual Analytics
Rating: 4.1 out of 5 (227 ratings)
5,604 students
As a student you will learn how to identify and fit trends in time forecasting charts
As a student you will be learning how to graphically validate classification machine learning models
Once you have covered the course you will have a new background on how to visualize data in SAS Visual Analytics
By the time you have finished this course you will have developed new trending skills on data analytics
Part of this course is to learn how to interpret data through charts

Requirements

  • Basic background in statistics and charts

Description

Practical SAS Visual Analytics is aimed to show examples of data visualization using SAS Visual Analytics, which is one of the leading software in the graphical analytics marketshare. To try this software requires no installation, no configuration and no previous experience. SAS Visual Analytics on SAS Viya is a cloud hosted proprietary software that requires a license to be used, since may 2019 you might be able to access it for free as an independent learner in SAS cloud servers. SAS Visual Analytics works on Linux Servers called LASR servers, it is compiled to handle massive amounts of data distributed across computer clusters. You can access to SAS VA through your web browser. The course will not have a theoretical approach to the statistical background of the charts exhibited along the videos but it it will be more a practical discussion on how-to carry out statistical charts.

Who this course is for:

  • You should take this course if you have previous experience with data analysis
  • This course can be enrolled by students wanting to learn SAS Visual Analytics
  • This course is also made for people with prior data visualization experience

Course content

1 section • 15 lectures • 1h 3m total length
  • Introduction to SAS Visual Analytics Environment
    02:48
  • Bar Charts in SAS Visual Analytics
    03:11
  • Pie Charts
    04:01
  • Histograms
    03:03
  • Step Plots
    02:56
  • Heat Maps
    03:43
  • Correlation Matrix
    04:29
  • Word Clouds
    02:51
  • Time Series in SAS Visual Analytics
    08:37
  • Gauge Charts
    02:36
  • Line Charts
    05:20
  • Box Plot
    03:17
  • Butterfly Chart
    03:15
  • Forecasting
    04:36
  • Classification
    08:58

Instructor

Machine Learning Engineer
Joseph Adams
  • 4.1 Instructor Rating
  • 227 Reviews
  • 5,602 Students
  • 1 Course

Greetings

I am a machine learning engineer and a huge part of my career has been involved in commercial banking, insurance and retail industries. In recent years there has been a revolution in the way business are making their decisions. With the growth and the capability to store and process massive amounts of data and aided with the development of ML algorithms we have discover that strategies can be smarter if based on data.

Basically my job is to develop, assess and mantain ML models from countless source of data stored in computer clusters and then propose conclusions based on the output of the algorithm.

I hope the courses in this platform help you to find the motivation and the knowledge required to succeed in your work.