Optimization & A/B Testing Statistics
Description
Whether you've got a lean startup or a fat Fortune 500, the faster you learn the faster you'll grow. Optimization and a/b testing is at the heart of learning fast.
I guarantee you will learn something in this course that will raise your skill level. With the 30-day money-back guarantee, you can't lose.
We start with the basics, then cover the 8 steps of running a solid a/b test. Next we dive deep into the statistics behind hypothesis testing. In the long-run you will save your organization headaches by setting up tests correctly and analyzing them with the right statistical rigour.
There is double and triple digit ROI around optimization for companies that figure it out. Start now and impress your colleagues on Monday morning.
Topics include:
Examples of a/b tests
Hypothesis testing
Measurement as risk reduction
Selecting a KPI or success metric
8 Steps for Running an A/B Test
Selecting from amongs a/b test and MVT test designs
Lift Threshold
Null Hypothesis
Statistical significance
Sample size estimates
confidence interval
test statistic
t-tests
standard error of the mean
chi-square
Fischer Exact test
Statistical Power
Type I error
Type II error
p-values
How to choose what statistical test to run
Instructor
Jared Waxman works at Yahoo! in Sunnyvale CA where he serves as Senior Director of Growth.
Previously he worked for Adobe in San Jose CA, where he served as Group Manager for Online Optimization & Analytics for Adobe.
In his nearly twenty years of experience in Silicon Valley where he gained experience in website optimization, web analytics, and growth hacking he has been on both the tools-side and the client-side, beginning as Director of Product Management for Alexa Internet's web measurement division, before working with Amazon and Intuit. He holds a Bachelors of Science from Yale University.