Udemy
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
Development
Web Development Data Science Mobile Development Programming Languages Game Development Database Design & Development Software Testing Software Engineering Software Development Tools No-Code Development
Business
Entrepreneurship Communication Management Sales Business Strategy Operations Project Management Business Law Business Analytics & Intelligence Human Resources Industry E-Commerce Media Real Estate Other Business
Finance & Accounting
Accounting & Bookkeeping Compliance Cryptocurrency & Blockchain Economics Finance Finance Cert & Exam Prep Financial Modeling & Analysis Investing & Trading Money Management Tools Taxes Other Finance & Accounting
IT & Software
IT Certifications Network & Security Hardware Operating Systems & Servers Other IT & Software
Office Productivity
Microsoft Apple Google SAP Oracle Other Office Productivity
Personal Development
Personal Transformation Personal Productivity Leadership Career Development Parenting & Relationships Happiness Esoteric Practices Religion & Spirituality Personal Brand Building Creativity Influence Self Esteem & Confidence Stress Management Memory & Study Skills Motivation Other Personal Development
Design
Web Design Graphic Design & Illustration Design Tools User Experience Design Game Design 3D & Animation Fashion Design Architectural Design Interior Design Other Design
Marketing
Digital Marketing Search Engine Optimization Social Media Marketing Branding Marketing Fundamentals Marketing Analytics & Automation Public Relations Paid Advertising Video & Mobile Marketing Content Marketing Growth Hacking Affiliate Marketing Product Marketing Other Marketing
Lifestyle
Arts & Crafts Beauty & Makeup Esoteric Practices Food & Beverage Gaming Home Improvement & Gardening Pet Care & Training Travel Other Lifestyle
Photography & Video
Digital Photography Photography Portrait Photography Photography Tools Commercial Photography Video Design Other Photography & Video
Health & Fitness
Fitness General Health Sports Nutrition & Diet Yoga Mental Health Martial Arts & Self Defense Safety & First Aid Dance Meditation Other Health & Fitness
Music
Instruments Music Production Music Fundamentals Vocal Music Techniques Music Software Other Music
Teaching & Academics
Engineering Humanities Math Science Online Education Social Science Language Learning Teacher Training Test Prep Other Teaching & Academics
Web Development JavaScript React Angular CSS Node.Js HTML5 PHP Vue JS
AWS Certification Microsoft Certification AWS Certified Solutions Architect - Associate AWS Certified Cloud Practitioner CompTIA A+ Amazon AWS Cisco CCNA Microsoft AZ-900 AWS Certified Developer - Associate
Microsoft Power BI SQL Tableau Data Modeling Business Analysis Business Intelligence MySQL Qlik Sense Blockchain
Unity Unreal Engine Game Development Fundamentals C# 3D Game Development C++ Unreal Engine Blueprints 2D Game Development Virtual Reality
Google Flutter Android Development iOS Development React Native Swift Dart (programming language) Mobile App Development Kotlin SwiftUI
Graphic Design Photoshop Adobe Illustrator Drawing Digital Painting Canva InDesign Character Design Procreate Digital Illustration App
Life Coach Training Neuro-Linguistic Programming Personal Development Personal Transformation Life Purpose Mindfulness Meditation CBT Cognitive Behavioral Therapy Sound Therapy
Entrepreneurship Fundamentals Business Fundamentals Freelancing Business Strategy Startup Business Plan Online Business Blogging Home Business
Digital Marketing Social Media Marketing Marketing Strategy Internet Marketing Google Analytics Copywriting Email Marketing YouTube Marketing Podcasting

DevelopmentData ScienceNatural Language Processing

Machine Learning: Natural Language Processing in Python (V2)

NLP: Use Markov Models, NLTK, Artificial Intelligence, Deep Learning, Machine Learning, and Data Science in Python
Highest rated
Rating: 4.7 out of 54.7 (561 ratings)
3,371 students
Created by Lazy Programmer Inc., Lazy Programmer Team
Last updated 5/2022
English
English [Auto]

What you'll learn

  • How to convert text into vectors using CountVectorizer, TF-IDF, word2vec, and GloVe
  • How to implement a document retrieval system / search engine / similarity search / vector similarity
  • Probability models, language models and Markov models (prerequisite for Transformers, BERT, and GPT-3)
  • How to implement a cipher decryption algorithm using genetic algorithms and language modeling
  • How to implement spam detection
  • How to implement sentiment analysis
  • How to implement an article spinner
  • How to implement text summarization
  • How to implement latent semantic indexing
  • How to implement topic modeling with LDA, NMF, and SVD
  • Machine learning (Naive Bayes, Logistic Regression, PCA, SVD, Latent Dirichlet Allocation)
  • Deep learning (ANNs, CNNs, RNNs, LSTM, GRU) (more important prerequisites for BERT and GPT-3)
  • Hugging Face Transformers (VIP only)
  • How to use Python, Scikit-Learn, Tensorflow, +More for NLP
  • Text preprocessing, tokenization, stopwords, lemmatization, and stemming
  • Parts-of-speech (POS) tagging and named entity recognition (NER)

Requirements

  • Install Python, it's free!
  • Decent Python programming skills
  • Optional: If you want to understand the math parts, linear algebra and probability are helpful

Description

Hello friends!


Welcome to Machine Learning: Natural Language Processing in Python (Version 2).


This is a massive 4-in-1 course covering:

1) Vector models and text preprocessing methods

2) Probability models and Markov models

3) Machine learning methods

4) Deep learning and neural network methods


In part 1, which covers vector models and text preprocessing methods, you will learn about why vectors are so essential in data science and artificial intelligence. You will learn about various techniques for converting text into vectors, such as the CountVectorizer and TF-IDF, and you'll learn the basics of neural embedding methods like word2vec, and GloVe.

You'll then apply what you learned for various tasks, such as:


  • Text classification

  • Document retrieval / search engine

  • Text summarization

Along the way, you'll also learn important text preprocessing steps, such as tokenization, stemming, and lemmatization.

You'll be introduced briefly to classic NLP tasks such as parts-of-speech tagging.


In part 2, which covers probability models and Markov models, you'll learn about one of the most important models in all of data science and machine learning in the past 100 years. It has been applied in many areas in addition to NLP, such as finance, bioinformatics, and reinforcement learning.

In this course, you'll see how such probability models can be used in various ways, such as:


  • Building a text classifier

  • Article spinning

  • Text generation (generating poetry)

Importantly, these methods are an essential prerequisite for understanding how the latest Transformer (attention) models such as BERT and GPT-3 work. Specifically, we'll learn about 2 important tasks which correspond with the pre-training objectives for BERT and GPT.


In part 3, which covers machine learning methods, you'll learn about more of the classic NLP tasks, such as:


  • Spam detection

  • Sentiment analysis

  • Latent semantic analysis (also known as latent semantic indexing)

  • Topic modeling

This section will be application-focused rather than theory-focused, meaning that instead of spending most of our effort learning about the details of various ML algorithms, you'll be focusing on how they can be applied to the above tasks.

Of course, you'll still need to learn something about those algorithms in order to understand what's going on. The following algorithms will be used:


  • Naive Bayes

  • Logistic Regression

  • Principal Components Analysis (PCA) / Singular Value Decomposition (SVD)

  • Latent Dirichlet Allocation (LDA)

These are not just "any" machine learning / artificial intelligence algorithms but rather, ones that have been staples in NLP and are thus an essential part of any NLP course.


In part 4, which covers deep learning methods, you'll learn about modern neural network architectures that can be applied to solve NLP tasks. Thanks to their great power and flexibility, neural networks can be used to solve any of the aforementioned tasks in the course.

You'll learn about:


  • Feedforward Artificial Neural Networks (ANNs)

  • Embeddings

  • Convolutional Neural Networks (CNNs)

  • Recurrent Neural Networks (RNNs)

The study of RNNs will involve modern architectures such as the LSTM and GRU which have been widely used by Google, Amazon, Apple, Facebook, etc. for difficult tasks such as language translation, speech recognition, and text-to-speech.

Obviously, as the latest Transformers (such as BERT and GPT-3) are examples of deep neural networks, this part of the course is an essential prerequisite for understanding Transformers.


Thank you for reading and I hope to see you soon!

Who this course is for:

  • Anyone who wants to learn natural language processing (NLP)
  • Anyone interested in artificial intelligence, machine learning, deep learning, or data science
  • Anyone who wants to go beyond typical beginner-only courses on Udemy

Instructors

Lazy Programmer Inc.
Artificial intelligence and machine learning engineer
Lazy Programmer Inc.
  • 4.6 Instructor Rating
  • 130,456 Reviews
  • 490,867 Students
  • 30 Courses

Today, I spend most of my time as an artificial intelligence and machine learning engineer with a focus on deep learning, although I have also been known as a data scientist, big data engineer, and full stack software engineer.

I received my first masters degree over a decade ago in computer engineering with a specialization in machine learning and pattern recognition. I received my second masters degree in statistics with applications to financial engineering.

Experience includes online advertising and digital media as both a data scientist (optimizing click and conversion rates) and big data engineer (building data processing pipelines). Some big data technologies I frequently use are Hadoop, Pig, Hive, MapReduce, and Spark.

I've created deep learning models to predict click-through rate and user behavior, as well as for image and signal processing and modeling text.

My work in recommendation systems has applied Reinforcement Learning and Collaborative Filtering, and we validated the results using A/B testing.

I have taught undergraduate and graduate students in data science, statistics, machine learning, algorithms, calculus, computer graphics, and physics for students attending universities such as Columbia University, NYU, Hunter College, and The New School. 

Multiple businesses have benefitted from my web programming expertise. I do all the backend (server), frontend (HTML/JS/CSS), and operations/deployment work. Some of the technologies I've used are: Python, Ruby/Rails, PHP, Bootstrap, jQuery (Javascript), Backbone, and Angular. For storage/databases I've used MySQL, Postgres, Redis, MongoDB, and more.

Lazy Programmer Team
Artificial Intelligence and Machine Learning Engineer
Lazy Programmer Team
  • 4.7 Instructor Rating
  • 50,462 Reviews
  • 197,462 Students
  • 16 Courses

Today, I spend most of my time as an artificial intelligence and machine learning engineer with a focus on deep learning, although I have also been known as a data scientist, big data engineer, and full stack software engineer.

I received my first masters degree over a decade ago in computer engineering with a specialization in machine learning and pattern recognition. I received my second masters degree in statistics with applications to financial engineering.

Experience includes online advertising and digital media as both a data scientist (optimizing click and conversion rates) and big data engineer (building data processing pipelines). Some big data technologies I frequently use are Hadoop, Pig, Hive, MapReduce, and Spark.

I've created deep learning models to predict click-through rate and user behavior, as well as for image and signal processing and modeling text.

My work in recommendation systems has applied Reinforcement Learning and Collaborative Filtering, and we validated the results using A/B testing.

I have taught undergraduate and graduate students in data science, statistics, machine learning, algorithms, calculus, computer graphics, and physics for students attending universities such as Columbia University, NYU, Hunter College, and The New School.

Multiple businesses have benefitted from my web programming expertise. I do all the backend (server), frontend (HTML/JS/CSS), and operations/deployment work. Some of the technologies I've used are: Python, Ruby/Rails, PHP, Bootstrap, jQuery (Javascript), Backbone, and Angular. For storage/databases I've used MySQL, Postgres, Redis, MongoDB, and more.

Top companies choose Udemy Business to build in-demand career skills.
NasdaqVolkswagenBoxNetAppEventbrite
  • Udemy Business
  • Teach on Udemy
  • Get the app
  • About us
  • Contact us
  • Careers
  • Blog
  • Help and Support
  • Affiliate
  • Investors
  • Impressum Kontakt
  • Terms
  • Privacy policy
  • Cookie settings
  • Sitemap
  • Accessibility statement
Udemy
© 2022 Udemy, Inc.