Machine Learning in R & Predictive Models | 3 Courses in 1
What you'll learn
- Your complete guide to unsupervised & supervised machine learning and predictive modeling using R-programming language
- It covers both theoretical background of MACHINE LERANING & and predictive modeling as well as practical examples in R and R-Studio
- Fully understand the basics of Machine Learning, Cluster Analysis & Predictive Modelling
- Highly practical data science examples related to supervised machine learning, clustering & prediction modelling in R
- Learn R-programming from scratch: R crash course is included that you could start R-programming for machine learning
- Be Able To Harness The Power of R For Practical Data Science
- Compare different different machine learning algorithms for regression & classification modelling
- Apply statistical and machine learning based regression & classification models to real data
- Build machine learning based regression & classification models and test their robustness in R
- Learn when and how machine learning & predictive models should be correctly applied
- Test your skills with multiple coding exercices and final project that you will ommplement independently
- Implement Machine Learning Techniques/Classification Such As Random Forests, SVM etc in R
- You'll have a copy of the scripts used in the course for your reference to use in your analysis
Requirements
- Availability computer and internet & strong interest in the topic
Description
Machine Learning in R & Predictive Models |Theory & Practice
My course will be your complete guide to the theory and applications of supervised & unsupervised machine learning and predictive modelling using the R-programming language. This course also combines the material of 3 independent courses related to (1) R-programming, (2) Machine Learning and (3) Predictive modelling.
Unlike other courses, it offers NOT ONLY the guided demonstrations of the R-scripts but also covers theoretical background that will allow you to FULLY UNDERSTAND & APPLY MACHINE LEARNING & PREDICTIVE MODELS (K-means, Random Forest, SVM, logistic regression, etc) in R (many R packages incl. caret package will be covered).
This course also covers all the main aspects of practical and highly applied data science related to Machine Learning (classification & regressions) and unsupervised clustering techniques. Thus, if you take this course, you will save lots of time & money on other expensive materials in the R based Data Science and Machine Learning domain.
In this age of big data, companies across the globe use R to analyze big volumes of data for business and research. By becoming proficient in supervised & unsupervised machine learning and predictive modeling in R, you can give your company a competitive edge and boost your career to the next level
THIS COURSE HAS 8 SECTIONS COVERING EVERY ASPECT OF MACHINE LEARNING: BOTH THEORY & PRACTICE
Fully understand the basics of Machine Learning, Cluster Analysis & Prediction Models from theory to practice
Harness applications of supervised machine learning (classification and regressions) and Unsupervised machine learning (cluster analysis) in R
Learn how to apply correctly prediction models and test them in R
Complete programming & data science tasks in an independent project on Supervised Machine Learning in R
Implement Unsupervised Clustering Techniques (k-means Clustering and Hierarchical Clustering etc)
Learn the basics of R-programming
Get a copy of all scripts used in the course
and MORE
NO PRIOR R OR STATISTICS/MACHINE LEARNING / R KNOWLEDGE REQUIRED:
You’ll start by absorbing the most valuable Machine Learning, Predictive Modelling & Data Science basics, and techniques. I use easy-to-understand, hands-on methods to simplify and address even the most difficult concepts in R.
My course will help you implement the methods using real data obtained from different sources. Thus, after completing my Machine Learning course in R, you’ll easily use different data streams and data science packages to work with real data in R.
In case it is your first encounter with R, don’t worry, my course is a full introduction to R & R programming in this course.
This course is different from other training resources. Each lecture seeks to enhance your Machine Learning and modelling skills in a demonstrable and easy-to-follow manner and provide you with practically implementable solutions. You’ll be able to start analyzing different streams of data for your projects and gain appreciation from your future employers with your improved machine learning skills and knowledge of cutting edge data science methods.
The course is ideal for professionals who need to use cluster analysis, unsupervised machine learning, and R in their field.
One important part of the course is the practical exercises. You will be given some precise instructions and datasets to run Machine Learning algorithms using the R tools.
JOIN MY COURSE NOW!
Who this course is for:
- The course is ideal for professionals who need to use cluster analysis, unsupervised machine learning and R in their field.
- Everyone who would like to learn Data Science Applications in the R & R Studio Environment
- Everyone who would like to learn theory and implementation of Machine Learning On Real-World Data
Instructors
I am a passionate data science expert and educator. I do regular teaching and training all over the world. I have many satisfied students! And now I will be glad if I can teach also you these interesting, highly applied, and exciting topics!
For GIS & Remote Sensing students:
Order of how to take my courses:
Option 1: Take all individual courses that contain more details and more labs in the following order:
1. Get started with GIS & Remote Sensing in QGIS #Beginners
2. Remote Sensing in QGIS: Fundamentals of Image Analysis 2020
3. Core GIS: Land Use and Land Cover & Change Detection in QGIS
4. Machine Learning in GIS: Understand the Theory and Practice
5. Machine Learning in GIS: Land Use/Land Cover Image Analysis
6. Machine Learning in ArcGIS: Map Land Use/ Land Cover in GIS
7. Object-based image analysis & classification in QGIS/ArcGIS
8. ArcGIS: Learn Deep Learning in ArcGIS to advance GIS skills
8. Google Earth Engine for Big GeoData Analysis: 3 Courses in 1
10. Google Earth Engine for Machine Learning & Change Detection
11. QGIS & Google Earth Engine for Environmental Applications
12. Advanced Remote Sensing Analysis in QGIS and on cloud
13. Specific cources focused on Remote Sensing applications (see my cource list)
Option 2: Take my combi-courses that contain summarized information from the above courses, though in fewer details (labs, videos):
1. QGIS Mega Course: GIS and Remote Sensing- Beginner to Expert
2. Geospatial Data Analyses & Remote Sensing: 4 Classes in 1
3. Machine Learning in GIS and Remote Sensing: 5 Courses in 1
4. Google Earth Engine for Big GeoData Analysis: 3 Courses in 1
5. Google Earth Engine for Machine Learning & Change Detection
Ich bin ein erfahrener Berater und Experte in Data Science. Ich habe mein MSc in Informatik an der TH Köln und MBA an der Universität Durham (UK) erlangt und habe mich später im Fachbereich Informatik promoviert. Als erfahrene Trainer mit mehr als 15 Jahren Berufserfahrung möchte ich meine Leidenschaft, praktische Erfahrungen und Kenntnisse in den Themen Big Data, Data Science, Data Analytics und IT management mit den anderen teilen und die praktische Kompetenzen von meinen Studenten auf ein sehr hohes Niveau bringen.