ISTQB AI Testing - Learn best practices and prepare for exam
What you'll learn
- Understand the current state and expected trends of AI.
- Experience the implementation and testing of a ML model and recognize where testers can best influence its quality.
- Understand the challenges associated with testing AI-Based systems, such as their self-learning capabilities, bias, ethics, complexity, non-determinism and more
- Contribute to the test strategy for an AI-Based system.
- Design and execute test cases for AI-based systems.
- Recognize the special requirements for the test infrastructure to support the testing of AI-based systems.
- Understand how AI can be used to support software testing.
Requirements
- No programming experience required. Detailed guides provided for everything you need to know
Description
Course Overview
The testing of traditional systems is well-understood, but AI-based systems, which are becoming more prevalent and critical to our daily lives, introduce new challenges. This course will introduce the key concepts of Artificial Intelligence (AI), how we decide acceptance criteria and how we test AI-based systems. These systems have unique characteristics, which makes them special – they can be complex (e.g. deep neural nets), self-learning, based on big data, and non-deterministic, which creates many new challenges and opportunities for testing them.
The course will introduce the range of types of AI-based systems in use today and explain how machine-learning (ML) is often a key part of these systems and show how easy it is to build ML systems. We will look at how the setting of acceptance criteria needs to change for AI-based systems, why we need to consider ethics, and show how the characteristics of AI-based systems make testing more difficult than for traditional systems.
Introduction to ISTQB AI Testing Course by AIT
Three perspectives are used to show how quality can be achieved with these systems. First, we will consider the choices and checks that need to be made when building a machine-learning system to ensure the quality of data used for both training and prediction. Ideally, we want data that is free from bias and mis-labelling, but, most importantly, closely aligned with the problem. Next, we will consider the range of approaches suitable for the black-box testing of AI-based systems, such as back-to-back testing and A/B testing, introducing, in some detail, the metamorphic testing technique. Third, we will show how white-box testing can be applied to drive the testing and measure the test coverage of neural networks.
The need for virtual test environments will be demonstrated using the case of self-driving cars as an example.
Finally, the use of AI as the basis of tools that support testing will be considered by looking at examples of the successful application of AI to common testing problems.
The course is highly practical and includes many hands-on exercises, providing attendees with experience of building and testing several different types of machine learning systems. No programming experience is required.
Who this course is for:
- Anyone involved in testing AI-based systems and/or AI for testing. This includes people in roles such as testers, test analysts, data analysts, test engineers, test consultants, test managers, user acceptance testers, and software developers. This certification is also appropriate for anyone who wants a basic understanding of testing AI-based systems and/or AI for testing, such as project managers, quality managers, software development managers, business analysts, operations team members, IT directors, and management consultants. To gain this certification, candidates must hold the Certified Tester Foundation Level certificate.
Instructor
Dr Stuart Reid is Chief Technology Officer at STA Consulting in Seoul with nearly 40 years’ experience in the IT industry, working in development, testing, and education. While currently concentrating on the testing of AI, application areas range from safety-critical to financial and media.
Stuart supports the worldwide testing community in a number of roles. He is convener of the ISO Software Testing Working Group, which has published the ISO/IEC/IEEE 29119 series of software testing standards and is the co-convener of the ISO Joint Working Group on Testing AI. Stuart previously led the ISO project on autonomous systems for software and systems engineering. He was also co-founder and first president of the International Software Testing Qualifications Board (ISTQB) to promote software testing qualifications globally and he was one of the authors of the new ISTQB certification on the testing of AI-based systems.