Udemy
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
Development
Web Development Data Science Mobile Development Programming Languages Game Development Database Design & Development Software Testing Software Engineering Development Tools No-Code Development
Business
Entrepreneurship Communications Management Sales Business Strategy Operations Project Management Business Law Business Analytics & Intelligence Human Resources Industry E-Commerce Media Real Estate Other Business
Finance & Accounting
Accounting & Bookkeeping Compliance Cryptocurrency & Blockchain Economics Finance Finance Cert & Exam Prep Financial Modeling & Analysis Investing & Trading Money Management Tools Taxes Other Finance & Accounting
IT & Software
IT Certification Network & Security Hardware Operating Systems Other IT & Software
Office Productivity
Microsoft Apple Google SAP Oracle Other Office Productivity
Personal Development
Personal Transformation Personal Productivity Leadership Career Development Parenting & Relationships Happiness Esoteric Practices Religion & Spirituality Personal Brand Building Creativity Influence Self Esteem & Confidence Stress Management Memory & Study Skills Motivation Other Personal Development
Design
Web Design Graphic Design & Illustration Design Tools User Experience Design Game Design Design Thinking 3D & Animation Fashion Design Architectural Design Interior Design Other Design
Marketing
Digital Marketing Search Engine Optimization Social Media Marketing Branding Marketing Fundamentals Marketing Analytics & Automation Public Relations Advertising Video & Mobile Marketing Content Marketing Growth Hacking Affiliate Marketing Product Marketing Other Marketing
Lifestyle
Arts & Crafts Beauty & Makeup Esoteric Practices Food & Beverage Gaming Home Improvement Pet Care & Training Travel Other Lifestyle
Photography & Video
Digital Photography Photography Portrait Photography Photography Tools Commercial Photography Video Design Other Photography & Video
Health & Fitness
Fitness General Health Sports Nutrition Yoga Mental Health Dieting Self Defense Safety & First Aid Dance Meditation Other Health & Fitness
Music
Instruments Music Production Music Fundamentals Vocal Music Techniques Music Software Other Music
Teaching & Academics
Engineering Humanities Math Science Online Education Social Science Language Teacher Training Test Prep Other Teaching & Academics
AWS Certification Microsoft Certification AWS Certified Solutions Architect - Associate AWS Certified Cloud Practitioner CompTIA A+ Cisco CCNA Amazon AWS CompTIA Security+ Microsoft AZ-900
Graphic Design Photoshop Adobe Illustrator Drawing Digital Painting InDesign Character Design Canva Figure Drawing
Life Coach Training Neuro-Linguistic Programming Personal Development Mindfulness Personal Transformation Life Purpose Meditation CBT Emotional Intelligence
Web Development JavaScript React CSS Angular PHP Node.Js WordPress Vue JS
Google Flutter Android Development iOS Development React Native Swift Dart Programming Language Mobile Development Kotlin SwiftUI
Digital Marketing Google Ads (Adwords) Social Media Marketing Google Ads (AdWords) Certification Marketing Strategy Internet Marketing YouTube Marketing Email Marketing Retargeting
Microsoft Power BI SQL Tableau Business Analysis Data Modeling Business Intelligence MySQL Data Analysis Blockchain
Business Fundamentals Entrepreneurship Fundamentals Business Strategy Business Plan Startup Online Business Freelancing Blogging Home Business
Unity Game Development Fundamentals Unreal Engine C# 3D Game Development C++ 2D Game Development Unreal Engine Blueprints Blender
30-Day Money-Back Guarantee
Development Data Science

Introduction To Data Science

Use the R Programming Language to execute data science projects and become a data scientist.
Rating: 3.6 out of 53.6 (248 ratings)
4,580 students
Created by Nina Zumel, John Mount
Published 2/2015
English
English [Auto]
30-Day Money-Back Guarantee

What you'll learn

  • Start and execute the steps of a data science project, from project definition to model evaluation.
  • Use machine learning techniques to build effective predictive models.
  • Learn how to find and correct common problems found in real world data.

Course content

4 sections • 28 lectures • 5h 52m total length

  • Preview04:20
  • Preview11:38
  • Starting with R and data
    16:12

  • Mapping Business to Machine Learning Tasks
    06:22
  • Validating Models
    17:01
  • Your Feedback is Valuable
    1 page
  • Naive Bayes: background
    13:12
  • Naive Bayes: practice
    14:14
  • Linear Regression: background
    19:20
  • Linear Regression: practice
    18:37
  • Logistic Regression: background
    07:17
  • Logistic Regression: practice
    16:52
  • Decision Trees and Random Forest: background
    06:55
  • Random Forest: practice
    10:23
  • Generalized Additive Models
    07:55
  • Support Vector Machines
    19:39
  • Preview13:36
  • Regularization for Linear and Logistic Regression
    08:32
  • Evaluating Models
    19:16

  • Loading Data in R
    19:28
  • Visualizing Data
    15:17
  • Missing Values
    12:09
  • The Shape of Data
    19:37
  • Dealing with Categorical Variables
    19:56
  • Useful Data Transformations
    14:13

  • Recommended Books
    05:22
  • Further Topics
    12:38
  • Next Steps
    01:48

Requirements

  • You should be familiar with basic scripting or programming, and basic statistics.
  • Familiarity with R is a plus. Familiarity with RStudio is a plus. We will teach you how to start with R and RStudio, but you want to install them on your computer prior to starting this course.

Description

Use the R Programming Language to execute data science projects and become a data scientist. Implement business solutions, using machine learning and predictive analytics.

The R language provides a way to tackle day-to-day data science tasks, and this course will teach you how to apply the R programming language and useful statistical techniques to everyday business situations.

With this course, you'll be able to use the visualizations, statistical models, and data manipulation tools that modern data scientists rely upon daily to recognize trends and suggest courses of action.

Understand Data Science to Be a More Effective Data Analyst

●Use R and RStudio

●Master Modeling and Machine Learning

●Load, Visualize, and Interpret Data

Use R to Analyze Data and Come Up with Valuable Business Solutions

This course is designed for those who are analytically minded and are familiar with basic statistics and programming or scripting. Some familiarity with R is strongly recommended; otherwise, you can learn R as you go.

You'll learn applied predictive modeling methods, as well as how to explore and visualize data, how to use and understand common machine learning algorithms in R, and how to relate machine learning methods to business problems.

All of these skills will combine to give you the ability to explore data, ask the right questions, execute predictive models, and communicate your informed recommendations and solutions to company leaders.

Contents and Overview

This course begins with a walk-through of a template data science project before diving into the R statistical programming language.

You will be guided through modeling and machine learning. You'll use machine learning methods to create algorithms for a business, and you'll validate and evaluate models.

You'll learn how to load data into R and learn how to interpret and visualize the data while dealing with variables and missing values. You’ll be taught how to come to sound conclusions about your data, despite some real-world challenges.

By the end of this course, you'll be a better data analyst because you'll have an understanding of applied predictive modeling methods, and you'll know how to use existing machine learning methods in R. This will allow you to work with team members in a data science project, find problems, and come up solutions.

You’ll complete this course with the confidence to correctly analyze data from a variety of sources, while sharing conclusions that will make a business more competitive and successful.

The course will teach students how to use existing machine learning methods in R, but will not teach them how to implement these algorithms from scratch. Students should be familiar with basic statistics and basic scripting/programming.

Who this course is for:

  • The course is for analytically minded students who are looking for an introduction to applied predictive modeling methods, and who want to learn about what goes into successful data science projects. The course will teach students how to use existing machine learning methods in R, but will not teach them how to implement these algorithms from scratch. Students should be familiar with basic statistics and basic scripting/programming. Some familiarity with R is helpful; otherwise, students should be willing to learn R as they go. We will direct you to ready-to-go implementations and additional references throughout the course.

Instructors

Nina Zumel
Data Scientist, Win-Vector LLC
Nina Zumel
  • 3.6 Instructor Rating
  • 248 Reviews
  • 4,580 Students
  • 1 Course

Nina Zumel, PhD, has over 10 years of experience in research, machine learning, and data science. She is a co-author of the popular book Practical Data Science with R, co-author of the EMC data scientist certification program, and blogs often on statistics, data science, and data visualization.

John Mount
Data Scientist, Win-Vector LLC
John Mount
  • 3.6 Instructor Rating
  • 248 Reviews
  • 8,734 Students
  • 1 Course

I am principal at with the data science consulting firm Win-Vector LLC. Win-Vector LLC specializes in data science research, implementation, and training. I have over 10 years of experience in research, teaching, machine learning, and data science.

I am co-author of the popular book Practical Data Science with R, and I blog often on mathematics, programming, machine learning, and optimization on the Win-Vector blog.

My profesional experience includes managing a data science group for Shopping dot com (an eBay company), working in price optimization for Rapt (acquired by Microsoft), and apply machine learning at a web-scale for Kosmix (acquired by Walmart online). My original fields of study were mathematics (AB UC Berkeley) and computer science (Ph.D. Carnegie Mellon) with a heavy emphasis on probability theory.

  • Udemy for Business
  • Teach on Udemy
  • Get the app
  • About us
  • Contact us
  • Careers
  • Blog
  • Help and Support
  • Affiliate
  • Impressum Kontakt
  • Terms
  • Privacy policy
  • Cookie settings
  • Sitemap
  • Featured courses
Udemy
© 2021 Udemy, Inc.