Electrodynamics based on Maxwell equations (Bachelor level)
What you'll learn
- Early electrodynamic phenomena & the mathematics that have motivated the Maxwell equations
- Light as an electromagnetic wave
- Electrostatics, Magnetostatics & solving time-dependent problems
Requirements
- Basics in differential calculus (College level)
- Basics in vector algebra (would be ideal)
- Everything else will be tought in a mathematical tutorial section of this course
Description
This course is for everyone who wants to learn about theoretical electrodynamics!
A bit of college mathematics (basic derivatives and vector algebra) is all you need to know!
Several concepts of electrodynamics like charges, electromagnetic waves, electric & magnetic fields are taught already in highschool. However, it is not really possible to understand their true origin. For that purpose Maxwell formulated 4 equations based on which we can explain most phenomena of modern electrodynamics: electrostatics, magnetostatics, as well as time-dependent problems and light as an electromagnetic wave.
However, I think that this theoretical approach is often taught either too vague or with a too strong focus on the mathematics. Instead of watching random Youtube videos or going through hundred of hours of university courses, I think that Udemy courses are a nice platform for purposeful learning.
You are kindly invited to join this carefully prepared course that will teach you the 101 of electrodynamics and includes quizzes, slides, exercises, as well as a tutorial on the mathematical prerequisites!
Why me?
My name is Börge Göbel and I am a postdoc working as a scientist on electrodynamics and quantum theory. I am currently doing research on the emergent electrodynamics of special magnetic textures. I have not forgotten the time when I learned about electrodynamics and still remember the problems that I and other students had. I have refined my advisor skills as a tutor of Bachelor, Master and PhD students in theoretical physics.
“Dr. Göbel produces excellent courses with lessons that provide both technical depth and great material and audio/visual production. The math review in this course was an excellent math review on its own.“ - Eddi Girolamo
This course is for you ...
... if you are about to attend a university course on electrodynamics and want to be well prepared
... or if you want to go through a theoretical physics course without having to deal with the hardcore mathematics of other topics
... or if you have a general idea about charges, electromagnetic waves, magnetic & electric fields but want to know their true origin
... or if you simply want to have a carefully condensed refresher before your exams :-)
The topics
We will start with the mathematical prerequisites and the early physical phenomena that have led to our modern understanding of electrodynamics. For example, we learn about complex numbers, the nabla operator, charges, magnetic moments, as well as the electric and magnetic fields. Then, we will introduce the Maxwell's equations. These four equations are the basis of this whole course and allow to derive all of the phenomena that we discuss, like the Ampère's law, the Coulomb's law and the Biot-Savart's law.
We start with the special case of vacuum where charges and currents are absent: Here, the excitations are electromagnetic waves or, in other words, light. We derive the electric and magnetic fields and discuss the possible polarizations of light.
Thereafter, we leave vacuum but consider time-independent problems. This field of theoretical physics is called electrostatics and magnetostatics. We solve interesting problems like calculating the electric field of a charged sphere, the voltage difference in a capacitor, the magnetic field around a wire or the far-field of a dipole.
Finally, we consider the most general case: time-dependent problems. As we will see, we can rely on our previous results from the static case with a few modifications. Also, I will show you how all of our results only slightly change, when we consider the electrodynamics in matter, like in a piece of metal.
I hope you are excited and I kindly welcome you to our course!
Who this course is for:
- Students in science & engineering
- Everyone who is interested in electrodynamics and not too afraid of a bit of mathematics
Instructor
Hi, my name is Börge, I am a theoretical physicist working in the field for more than 10 years. I have been supervising several Bachelor, Master and PhD students and I am an experienced instructor on physics, mathematics and programming-related topics and want to spark your excitement for science. I will help you to become knowledgeable and successful in the STEM fields. Understanding Science, Technology, Engineering and Mathematics basically guarantees you to have a successful career and to be able to make the world a better place. However, getting into these extremely fascinating topics can be frustrating: They are often taught either too loosely or with a too strong focus on the mathematics.
My all-in-one courses are exactly the courses I wish I had when I was first getting into university-level mathematics, physics & programming!
You will benefit no matter what your skill level is: from ‘interested newcomer’ to ‘experienced university student’. Each beginner friendly course (mathematical basics included) condenses more than a whole semester of university to about 10h-20h of time-efficient videos, exercises, quizzes, and real-world examples.
Join 6,000+ happy students today in one of my comprehensive 5-star courses. I am excited to go on this journey together with you :-)
Career as a scientist
Dr. Börge Göbel is a tutor and scientist working in theoretical physics. For his post-doctoral research position in quantum physics at a German university, he has to use and refine his programming (mostly Python and Mathematica), mathematics and physics skills on a daily basis. His 30+ original research publications in the most prestigious and renowned journals (including Nature & Science publishing groups) have been cited 1,000+ times and he has collaborated with outstanding researchers (including Nobel prize laureates) from all over the world.
The secret to do research successfully is not to hole up in complicated equations but to make the difficult concepts simple and accessible – to oneself and to others :-)
Check out my website to stay updated about my courses.