Deep Learning Prerequisites: Logistic Regression in Python
What you'll learn
- program logistic regression from scratch in Python
- describe how logistic regression is useful in data science
- derive the error and update rule for logistic regression
- understand how logistic regression works as an analogy for the biological neuron
- use logistic regression to solve real-world business problems like predicting user actions from e-commerce data and facial expression recognition
- understand why regularization is used in machine learning
- Understand important foundations for OpenAI ChatGPT, GPT-4, DALL-E, Midjourney, and Stable Diffusion
Requirements
- Derivatives, matrix arithmetic, probability
- You should know some basic Python coding with the Numpy Stack
Description
Ever wondered how AI technologies like OpenAI ChatGPT, GPT-4, DALL-E, Midjourney, and Stable Diffusion really work? In this course, you will learn the foundations of these groundbreaking applications.
This course is a lead-in to deep learning and neural networks - it covers a popular and fundamental technique used in machine learning, data science and statistics: logistic regression. We cover the theory from the ground up: derivation of the solution, and applications to real-world problems. We show you how one might code their own logistic regression module in Python.
This course does not require any external materials. Everything needed (Python, and some Python libraries) can be obtained for free.
This course provides you with many practical examples so that you can really see how deep learning can be used on anything. Throughout the course, we'll do a course project, which will show you how to predict user actions on a website given user data like whether or not that user is on a mobile device, the number of products they viewed, how long they stayed on your site, whether or not they are a returning visitor, and what time of day they visited.
Another project at the end of the course shows you how you can use deep learning for facial expression recognition. Imagine being able to predict someone's emotions just based on a picture!
If you are a programmer and you want to enhance your coding abilities by learning about data science, then this course is for you. If you have a technical or mathematical background, and you want use your skills to make data-driven decisions and optimize your business using scientific principles, then this course is for you.
This course focuses on "how to build and understand", not just "how to use". Anyone can learn to use an API in 15 minutes after reading some documentation. It's not about "remembering facts", it's about "seeing for yourself" via experimentation. It will teach you how to visualize what's happening in the model internally. If you want more than just a superficial look at machine learning models, this course is for you.
"If you can't implement it, you don't understand it"
Or as the great physicist Richard Feynman said: "What I cannot create, I do not understand".
My courses are the ONLY courses where you will learn how to implement machine learning algorithms from scratch
Other courses will teach you how to plug in your data into a library, but do you really need help with 3 lines of code?
After doing the same thing with 10 datasets, you realize you didn't learn 10 things. You learned 1 thing, and just repeated the same 3 lines of code 10 times...
Suggested Prerequisites:
calculus (taking derivatives)
matrix arithmetic
probability
Python coding: if/else, loops, lists, dicts, sets
Numpy coding: matrix and vector operations, loading a CSV file
WHAT ORDER SHOULD I TAKE YOUR COURSES IN?:
Check out the lecture "Machine Learning and AI Prerequisite Roadmap" (available in the FAQ of any of my courses, including the free Numpy course)
Who this course is for:
- Adult learners who want to get into the field of data science and big data
- Students who are thinking of pursuing machine learning or data science
- Students who are tired of boring traditional statistics and prewritten functions in R, and want to learn how things really work by implementing them in Python
- People who know some machine learning but want to be able to relate it to artificial intelligence
- People who are interested in bridging the gap between computational neuroscience and machine learning
Featured review
Instructor
The Lazy Programmer is a seasoned online educator with an unwavering passion for sharing knowledge. With over 10 years of experience, he has revolutionized the field of data science and machine learning by captivating audiences worldwide through his comprehensive courses and tutorials.
Equipped with a multidisciplinary background, the Lazy Programmer holds a remarkable duo of master's degrees. His first foray into academia led him to pursue computer engineering, with a specialized focus on machine learning and pattern recognition. Undeterred by boundaries, he then ventured into the realm of statistics, exploring its applications in financial engineering.
Recognized as a trailblazer in his field, the Lazy Programmer quickly embraced the power of deep learning when it was still in its infancy. As one of the pioneers, he fearlessly embarked on instructing one of the first-ever online courses on deep learning, catapulting him to the forefront of the industry.
Beyond the realm of education, the Lazy Programmer possesses invaluable hands-on experience that has shaped his expertise. His ventures into online advertising and digital media have yielded astounding results, propelling click-through rates and conversion rates to new heights and boosting revenues by millions of dollars at the companies he's worked for. As a full-stack software engineer, he boasts intimate familiarity with an array of backend and web technologies, including Python, Ruby on Rails, C++, Scala, PHP, Javascript, SQL, big data, Spark, and Redis.
While his achievements in the field of data science and machine learning are awe-inspiring, the Lazy Programmer's intellectual curiosity extends far beyond these domains. His fervor for knowledge leads him to explore diverse fields such as drug discovery, bioinformatics, and algorithmic trading. Embracing the challenges and intricacies of these subjects, he strives to unravel their potential and contribute to their development.
With an unwavering commitment to his students and a penchant for simplifying complex concepts, the Lazy Programmer stands as an influential figure in the realm of online education. Through his courses in data science, machine learning, deep learning, and artificial intelligence, he empowers aspiring learners to navigate the intricate landscapes of these disciplines with confidence.
As an author, mentor, and innovator, the Lazy Programmer leaves an indelible mark on the world of data science, machine learning, and beyond. With his ability to demystify the most intricate concepts, he continues to shape the next generation of data scientists and inspires countless individuals to embark on their own intellectual journeys.