Udemy
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
Development
Web Development Data Science Mobile Development Programming Languages Game Development Database Design & Development Software Testing Software Engineering Software Development Tools No-Code Development
Business
Entrepreneurship Communication Management Sales Business Strategy Operations Project Management Business Law Business Analytics & Intelligence Human Resources Industry E-Commerce Media Real Estate Other Business
Finance & Accounting
Accounting & Bookkeeping Compliance Cryptocurrency & Blockchain Economics Finance Finance Cert & Exam Prep Financial Modeling & Analysis Investing & Trading Money Management Tools Taxes Other Finance & Accounting
IT & Software
IT Certifications Network & Security Hardware Operating Systems & Servers Other IT & Software
Office Productivity
Microsoft Apple Google SAP Oracle Other Office Productivity
Personal Development
Personal Transformation Personal Productivity Leadership Career Development Parenting & Relationships Happiness Esoteric Practices Religion & Spirituality Personal Brand Building Creativity Influence Self Esteem & Confidence Stress Management Memory & Study Skills Motivation Other Personal Development
Design
Web Design Graphic Design & Illustration Design Tools User Experience Design Game Design 3D & Animation Fashion Design Architectural Design Interior Design Other Design
Marketing
Digital Marketing Search Engine Optimization Social Media Marketing Branding Marketing Fundamentals Marketing Analytics & Automation Public Relations Paid Advertising Video & Mobile Marketing Content Marketing Growth Hacking Affiliate Marketing Product Marketing Other Marketing
Lifestyle
Arts & Crafts Beauty & Makeup Esoteric Practices Food & Beverage Gaming Home Improvement & Gardening Pet Care & Training Travel Other Lifestyle
Photography & Video
Digital Photography Photography Portrait Photography Photography Tools Commercial Photography Video Design Other Photography & Video
Health & Fitness
Fitness General Health Sports Nutrition & Diet Yoga Mental Health Martial Arts & Self Defense Safety & First Aid Dance Meditation Other Health & Fitness
Music
Instruments Music Production Music Fundamentals Vocal Music Techniques Music Software Other Music
Teaching & Academics
Engineering Humanities Math Science Online Education Social Science Language Learning Teacher Training Test Prep Other Teaching & Academics
Web Development JavaScript React Angular CSS Node.Js HTML5 PHP Vue JS
AWS Certification Microsoft Certification AWS Certified Solutions Architect - Associate AWS Certified Cloud Practitioner CompTIA A+ Amazon AWS Cisco CCNA Microsoft AZ-900 AWS Certified Developer - Associate
Microsoft Power BI SQL Tableau Data Modeling Business Analysis Business Intelligence MySQL Qlik Sense Blockchain
Unity Unreal Engine Game Development Fundamentals C# 3D Game Development C++ Unreal Engine Blueprints 2D Game Development Virtual Reality
Google Flutter Android Development iOS Development React Native Swift Dart (programming language) Mobile App Development Kotlin SwiftUI
Graphic Design Photoshop Adobe Illustrator Drawing Digital Painting Canva InDesign Character Design Procreate Digital Illustration App
Life Coach Training Neuro-Linguistic Programming Personal Development Personal Transformation Life Purpose Mindfulness Meditation CBT Cognitive Behavioral Therapy Sound Therapy
Entrepreneurship Fundamentals Business Fundamentals Freelancing Business Strategy Startup Business Plan Online Business Blogging Home Business
Digital Marketing Social Media Marketing Marketing Strategy Internet Marketing Google Analytics Copywriting Email Marketing YouTube Marketing Podcasting

DevelopmentData ScienceComputer Vision

Computer Vision In Python! Face Detection & Image Processing

Learn Computer Vision With OpenCV In Python! Master Python By Implementing Face Recognition & Image Processing In Python
Rating: 4.7 out of 54.7 (138 ratings)
16,804 students
Created by Emenwa Global, Zoolord Academy
Last updated 8/2021
English

What you'll learn

  • Use OpenCV to work with image files
  • Understanding the fundamentals of computer vision & image processing
  • Use Python and OpenCV to draw shapes on images and videos
  • Get started with image manipulation with OpenCV, including smoothing, blurring, thresholding, and morphological operations.
  • OpenCV Image Manipulation Fundamentals using Python. Also includes a Python basics refresher session.
  • Open and Stream video with Python and OpenCV
  • Detect Objects, including corner, edge, and grid detection techniques with OpenCV and Python
  • Create Face Detection Software Using Haar Classifier
  • Have a toolbox of the most powerful Computer Vision models
  • Understand the theory behind Computer Vision
  • Create powerful Computer Vision applications

Requirements

  • Basic Python programming knowledge

Description

Computer vision is an interdisciplinary field that deals with how computers can be made to gain high-level understanding from digital images or videos. From the perspective of engineering, it seeks to automate tasks that the human visual system can do. Computer vision is concerned with the automatic extraction, analysis and understanding of useful information from a single image or a sequence of images. It involves the development of a theoretical and algorithmic basis to achieve automatic visual understanding. As a scientific discipline, computer vision is concerned with the theory behind artificial systems that extract information from images. The image data can take many forms, such as video sequences, views from multiple cameras, or multi-dimensional data from a medical scanner. As a technological discipline, computer vision seeks to apply its theories and models for the construction of computer vision systems.


Distinctions

The fields most closely related to computer vision are image processing, image analysis and machine vision. There is a significant overlap in the range of techniques and applications that these cover. This implies that the basic techniques that are used and developed in these fields are similar, something which can be interpreted as there is only one field with different names. On the other hand, it appears to be necessary for research groups, scientific journals, conferences and companies to present or market themselves as belonging specifically to one of these fields and, hence, various characterizations which distinguish each of the fields from the others have been presented.

Computer graphics produces image data from 3D models, computer vision often produces 3D models from image data. There is also a trend towards a combination of the two disciplines, e.g., as explored in augmented reality.

The following characterizations appear relevant but should not be taken as universally accepted:

  • Image processing and image analysis tend to focus on 2D images, how to transform one image to another, e.g., by pixel-wise operations such as contrast enhancement, local operations such as edge extraction or noise removal, or geometrical transformations such as rotating the image. This characterization implies that image processing/analysis neither require assumptions nor produce interpretations about the image content.

  • Computer vision includes 3D analysis from 2D images. This analyzes the 3D scene projected onto one or several images, e.g., how to reconstruct structure or other information about the 3D scene from one or several images. Computer vision often relies on more or less complex assumptions about the scene depicted in an image.

  • Machine vision is the process of applying a range of technologies & methods to provide imaging-based automatic inspection, process control and robot guidance in industrial applications. Machine vision tends to focus on applications, mainly in manufacturing, e.g., vision-based robots and systems for vision-based inspection, measurement, or picking (such as bin picking). This implies that image sensor technologies and control theory often are integrated with the processing of image data to control a robot and that real-time processing is emphasized by means of efficient implementations in hardware and software. It also implies that the external conditions such as lighting can be and are often more controlled in machine vision than they are in general computer vision, which can enable the use of different algorithms.

  • There is also a field called imaging which primarily focuses on the process of producing images, but sometimes also deals with processing and analysis of images. For example, medical imaging includes substantial work on the analysis of image data in medical applications.

  • Finally, pattern recognition is a field which uses various methods to extract information from signals in general, mainly based on statistical approaches and artificial neural networks. A significant part of this field is devoted to applying these methods to image data.

Applications

Applications range from tasks such as industrial machine vision systems which, say, inspect bottles speeding by on a production line, to research into artificial intelligence and computers or robots that can comprehend the world around them. The computer vision and machine vision fields have significant overlap. Computer vision covers the core technology of automated image analysis which is used in many fields. Machine vision usually refers to a process of combining automated image analysis with other methods and technologies to provide automated inspection and robot guidance in industrial applications. In many computer-vision applications, the computers are pre-programmed to solve a particular task, but methods based on learning are now becoming increasingly common. Examples of applications of computer vision include systems for:

  • Automatic inspection, e.g., in manufacturing applications;

  • Assisting humans in identification tasks, e.g., a species identification system

  • Controlling processes, e.g., an industrial robot;

  • Detecting events, e.g., for visual surveillance or people counting, e.g., in the restaurant industry;

  • Interaction, e.g., as the input to a device for computer-human interaction;

  • Modeling objects or environments, e.g., medical image analysis or topographical modeling;

  • Navigation, e.g., by an autonomous vehicle or mobile robot; and

  • Organizing information, e.g., for indexing databases of images and image sequences.


Medicine

One of the most prominent application fields is medical computer vision, or medical image processing, characterized by the extraction of information from image data to diagnose a patient. An example of this is detection of tumors, arteriosclerosis or other malign changes; measurements of organ dimensions, blood flow, etc. are another example. It also supports medical research by providing new information: e.g., about the structure of the brain, or about the quality of medical treatments. Applications of computer vision in the medical area also includes enhancement of images interpreted by humans—ultrasonic images or X-ray images for example—to reduce the influence of noise.


Machine Vision

A second application area in computer vision is in industry, sometimes called machine vision, where information is extracted for the purpose of supporting a manufacturing process. One example is quality control where details or final products are being automatically inspected in order to find defects. Another example is measurement of position and orientation of details to be picked up by a robot arm. Machine vision is also heavily used in agricultural process to remove undesirable food stuff from bulk material, a process called optical sorting.


Military

Military applications are probably one of the largest areas for computer vision. The obvious examples are detection of enemy soldiers or vehicles and missile guidance. More advanced systems for missile guidance send the missile to an area rather than a specific target, and target selection is made when the missile reaches the area based on locally acquired image data. Modern military concepts, such as "battlefield awareness", imply that various sensors, including image sensors, provide a rich set of information about a combat scene which can be used to support strategic decisions. In this case, automatic processing of the data is used to reduce complexity and to fuse information from multiple sensors to increase reliability.


Autonomous vehicles

One of the newer application areas is autonomous vehicles, which include submersibles, land-based vehicles (small robots with wheels, cars or trucks), aerial vehicles, and unmanned aerial vehicles (UAV). The level of autonomy ranges from fully autonomous (unmanned) vehicles to vehicles where computer-vision-based systems support a driver or a pilot in various situations. Fully autonomous vehicles typically use computer vision for navigation, e.g. for knowing where it is, or for producing a map of its environment (SLAM) and for detecting obstacles. It can also be used for detecting certain task specific events, e.g., a UAV looking for forest fires. Examples of supporting systems are obstacle warning systems in cars, and systems for autonomous landing of aircraft. Several car manufacturers have demonstrated systems for autonomous driving of cars, but this technology has still not reached a level where it can be put on the market. There are ample examples of military autonomous vehicles ranging from advanced missiles to UAVs for recon missions or missile guidance. Space exploration is already being made with autonomous vehicles using computer vision, e.g., NASA's Curiosity and CNSA's Yutu-2 rover.


Tactile Feedback

Materials such as rubber and silicon are being used to create sensors that allow for applications such as detecting micro undulations and calibrating robotic hands. Rubber can be used in order to create a mold that can be placed over a finger, inside of this mold would be multiple strain gauges. The finger mold and sensors could then be placed on top of a small sheet of rubber containing an array of rubber pins. A user can then wear the finger mold and trace a surface. A computer can then read the data from the strain gauges and measure if one or more of the pins is being pushed upward. If a pin is being pushed upward then the computer can recognize this as an imperfection in the surface. This sort of technology is useful in order to receive accurate data of the imperfections on a very large surface. Another variation of this finger mold sensor are sensors that contain a camera suspended in silicon. The silicon forms a dome around the outside of the camera and embedded in the silicon are point markers that are equally spaced. These cameras can then be placed on devices such as robotic hands in order to allow the computer to receive highly accurate tactile data.

Other application areas include:

  • Support of visual effects creation for cinema and broadcast, e.g., camera tracking (matchmoving).

  • Surveillance.

  • Driver drowsiness detection

  • Tracking and counting organisms in the biological sciences

[Reference: Wikipedia]

Who this course is for:

  • Anyone interested in Data Science, Computer Vision or Artificial Intelligence
  • Beginners who wants to start with Python Computer Vision using OpenCV
  • Anyone interested to build computer vision applications
  • Anyone who wants to level up in programming this year
  • Anyone who wants to advance his/her career in python programming

Instructors

Emenwa Global
Senior Developers
Emenwa Global
  • 4.1 Instructor Rating
  • 1,871 Reviews
  • 142,419 Students
  • 32 Courses

100,000+ Students Have Built Their Skills And Industry Career With Our Professional Courses. Many Work In High Tech Companies Today.

Learn by doing it yourself from scratch... Build real projects henceforth!

Emenwa Global instructors are industry experts with years of practical, real-world experience building software at industry leading companies. They are sharing everything they know to teach thousands of students around the world, just like you, the most in-demand technical and non-technical skills (which are commonly overlooked) in the most efficient way so that you can take control of your life and unlock endless exciting new career opportunities in the world of technology, no matter your background or experience.

One other important philosophy is that our courses are taught by real professionals, software developers with real and substantial experience in the industry, who are also great teachers. All our instructors are experienced, software developers.

Whether you are a beginner, looking to learn how to program for the very first time, or to brush up on your existing skills, or to learn new languages and frameworks, the Academy has you covered.


Zoolord Academy
100,000+ Happy Students
Zoolord Academy
  • 4.1 Instructor Rating
  • 2,486 Reviews
  • 150,860 Students
  • 65 Courses

Are You Looking Forward To A Life Of Freedom And Success?

Learn creative skills, from absolute beginner to advanced mastery.

Zoolord exists to help you succeed in life. Each course has been hand-tailored to teach a specific skill from photography and video to art, design and business.

Whether you’re trying to learn a new skill from scratch, or want to refresh your memory on something you’ve learned in the past, you’ve come to the right place.

Education makes the world a better place. Make your world better with new skills!

Our courses can be watched 24/7 wherever you are. Most are fully downloadable so you can take them with you. You can also view them on mobile devices with the Udemy mobile app.

100,000+ Students Are In Their Right Directions Today And Can't Be Wrong.

Join Us Now And Develop Your Career Power With Our Practical And Professional Courses On 30 Days Money  Back Guarantee Without Risk Of Investment. We Bear The Risk On Your Behalf. Grab A Course Now And Start Learning Today On 100% Risk FREE!

Top companies choose Udemy Business to build in-demand career skills.
NasdaqVolkswagenBoxNetAppEventbrite
  • Udemy Business
  • Teach on Udemy
  • Get the app
  • About us
  • Contact us
  • Careers
  • Blog
  • Help and Support
  • Affiliate
  • Investors
  • Impressum Kontakt
  • Terms
  • Privacy policy
  • Cookie settings
  • Sitemap
  • Accessibility statement
Udemy
© 2022 Udemy, Inc.