Building a Binary Classification Model in Azure ML
Requirements
- A basic understanding of Azure Machine Learning.
- A high level understanding of machine learning.
Description
"First impressions are "Finally, a practicing educator" Course delivery is smooth and spot on. Right before you lose hope a gem like this pops up - thanks." - Don Councill
Welcome to Building a Binary Classification Model in Azure ML.
Microsoft’s goal of democratizing machine learning is taking shape.
Taking predictive analytics to public cloud seems like the next logical step towards large-scale consumerization of Machine Learning. Azure ML does just that, while making it significantly easier for the developers to build high probability machine learning models without a PhD in statistics.
In this course, we are going to build one of the simplest and most common models, the binary classification model.
The goal of binary classification is to categorize data points into one of two buckets: 0 or 1, true or false and to survive or not to survive.
Many decisions in life are binary, answered either Yes or No. Many business problems also have binary answers. For example: “Is this transaction fraudulent?”, “Is this customer going to buy that product?”, or “Is this user going to churn?” In machine learning, this is called a binary classification problem.
We will use binary classification to predict the probability of someone surviving if they had been aboard the Titanic.
We are going to create an end to end workflow. We will download the data set, clean it, model it, evaluate it then publish our results so others can use it.
Upon completing the course you’ll know how to create a model that accurately predicts the survivability of an individual based on attributes in the data set.
You’ll gain insight into the vernacular used in machine learning.
For example, in the last sentence I used the world ‘attribute.’ An attribute in machine learning is no different than a column in a data set.
Various attributes affect the outcome of the prediction. For example, my chance of survival was 21.07% if I would have been in first class. If I would have been in second class my changes dropped to 2.16%. Either way, I wouldn't have made it.
Thanks for your interest in Building a Binary Classification Model in Azure ML.. We will see you in the course!!!
Who this course is for:
- If you want to make the jump from developer, DBA or Data Analyst to Data Scientist then this course is for you.
- This course is for those who are learning machine learning on the Azure ML Platform.
Featured review
Instructor
I'm the founder of LogikBot. I've worked at Microsoft and Uber. I helped design courses for Microsoft's Data Science Certifications. If you're interested in machine learning, I can help.
I've worked with databases for over two decades. I've worked for or consulted with over 50 different companies as a full time employee or consultant. Fortune 500 as well as several small to mid-size companies. Some include: Georgia Pacific, SunTrust, Reed Construction Data, Building Systems Design, NetCertainty, The Home Shopping Network, SwingVote, Atlanta Gas and Light and Northrup Grumman.
Over the last five years I've transitioned to the exciting world of applied machine learning. I'm excited to show you what I've learned and help you move into one of the single most important fields in this space.
Experience, education and passion
I learn something almost every day. I work with insanely smart people. I'm a voracious learner of all things SQL Server and I'm passionate about sharing what I've learned. My area of concentration is performance tuning. SQL Server is like an exotic sports car, it will run just fine in anyone's hands but put it in the hands of skilled tuner and it will perform like a race car.
Certifications
Certifications are like college degrees, they are a great starting points to begin learning. I'm a Microsoft Certified Database Administrator (MCDBA), Microsoft Certified System Engineer (MCSE) and Microsoft Certified Trainer (MCT).
Personal
Born in Ohio, raised and educated in Pennsylvania, I currently reside in Atlanta with my wife and two children.