Okta for Kubernetes, Blockchain, NFTs & CKC- 4 in 1 course
What you'll learn
- Students shall learn about the basics and development of Blockchain & Cryptocurrency using NFTs
- Solidity for Dapps: High-level overview of NFTs and Web 3.0
- NFTs for the implementation of Cryptotrading
- Solidity: Implementations of Modifiers and Creation of Smart Contracts (Web 3)
- Solidity: Implementations of transactions through digital wallet in the crypto- domain (web 3)
- Creating Ether Wallet, Setting Gas Price and Verifying Signatures
- Merkle Tree Implementation
- Setting up a Bi- directional Payment Channel
- dApps: Implementing CrowdFund & UNIWAP using Solidity
- DevOps: Practical Guide for the beginners
- DevOps for Service Virtualization & Transformation
- Introduction to Okta and its Implementation
Requirements
- No prior experience is needed. You shall learn everything you need to know
Description
This course will be on the development of Blockchain and Cryptocurrency Technology through the SOLIDITY language. Solidity is a curly-bracket language influenced by Object-Oriented languages including JavaScript and is designed to target the Ethereum Virtual Machine (EVM).
In this course, you will be taught to create smart contracts for uses such as voting, crowdfunding, blind auctions, and multi-signature wallets using the SOLIDITY language.
Upon successful completion of the course, each student will show tangible evidence of growth and maturity in the following areas:
1. Introduction to Okta & its implementation for Kubernetes.
2. Introduction of blockchain technologies.
3. Be able to state the key differentiators for blockchain from other technology systems.
4. Solidity: High-level overview of real-time implementations
5. Solidity: How to implement data structures in Solidity.
6. Solidity: How to create smart contracts using JVM and Web 3.
7. Solidity: How to model time stamping in smart contracts.
8. Solidity: How to perform digital transactions and model multiple smart contracts in JVM and Web 3.
9. Understand the technical underpinnings of blockchain technology
10. Apply various blockchain concepts to analyze examples
11. Make decisions about the use (or not) of blockchain technology in systems
12. Role of NFTs in Cryptocurrency.
13. Implications of Forks in Cryptocurrency domain.
14. Cryptocurrency trading using Artificial Intelligence.
15. Kubernetes and Helm.
16. Cyber Kill Chain.
Blockchain is an ever-expanding list of records, called blocks, that are linked together using cryptography. Each block contains a cryptographic hash of the previous block, a timestamp, and transaction data. The timestamp proves that the transaction data existed when the block was published in order to get into its hash. As blocks each contain information about the block previous to it, they form a chain, with each additional block reinforcing the ones before it. Therefore, blockchains are resistant to modification of their data because once recorded, the data in any given block cannot be altered retroactively without altering all subsequent blocks.
Blockchains are typically managed by a peer-to-peer network for use as a publicly distributed ledger, where nodes collectively adhere to a protocol to communicate and validate new blocks. Although blockchain records are not unalterable as forks are possible, blockchains may be considered secure by design and exemplify a distributed computing system.
By storing data across its peer-to-peer network, the blockchain eliminates a number of risks that come with data being held centrally. The decentralized blockchain may use ad hoc message passing and distributed networking. Peer-to-peer blockchain networks lack centralized points of vulnerability that computer crackers can exploit; likewise, it has no central point of failure. Blockchain security methods include the use of public-key cryptography.
Every node in a decentralized system has a copy of the blockchain. Data quality is maintained by massive database replication and computational trust. No centralized "official" copy exists and no user is "trusted" more than any other. Transactions are broadcast to the network using the software.
Who this course is for:
- Beginner students aspire to learn about the fundamentals of Okta, Blockchain Technology, NFTs and CKC
- Beginner researchers curious to learn about Okta, Blockchain & cryptocurrency key strides
Instructor
Prof. Dr. Engr. Junaid Zafar is currently working as Chairperson in Department of Electrical and Computer Engineering, Government College University, Lahore. He is also Director, Office of Research, innovation and Commercialization. He has completed his PhD in Electrical and Electronics Engineering, The University of Manchester University, UK, and BSc in Electrical Engineering from U.E.T Lahore. He is Academic visitor to the University of Cambridge, UK, MMU, UK and National University of Ireland. He remained Dual Degree programme coordinator at the Lancaster University, UK. Dr. Engr. Junaid Zafar received Roll of Honors for National Education Commission and Outstanding Teacher/ Researcher Awards from the Higher Education Commission, Pakistan. He is leading the macine learning and Artificial Intelligence centre with GC University, Lahore. He is member of Universal Association of Electronics & Computer Engineers, International Association of Computer Science & Information, and member of International Association of Engineers, IAENG Society of Artificial Intelligence, IAENG Society of Electrical Engineering, Science & Engineering Institute, IAENG Society of Imaging Engineering, Institute of Research Engineers & Doctors, and IAENG Society of Wireless Networks. He is member of editorial board in Journal of Future Technologies & Communications, Technical Programme committee, Frontiers of Information & Technologies, and Technical Programme Committee, Multi- Conference on Sciences & Technology. He is also serving as reviewer for IEEE Transactions on Microwave Theory & Techniques, IEEE Transactions on Antennas, IEEE Antenna & Wireless Propagation Letters, IEEE Transactions on Plasma Science, IEEE Transactions on Magnetics, International Journal of Electronics, and IET Antennas & Radio- wave Propagation. He has so far taught over twenty diffrent online courses based on outcome based student oriented models. He has also supervised more than 100 Masters/ MPhil thesis. He has published over 50 high impact factor publications and presented his work at several national and international renowned platforms.