Udemy
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
Development
Web Development Data Science Mobile Development Programming Languages Game Development Database Design & Development Software Testing Software Engineering Software Development Tools No-Code Development
Business
Entrepreneurship Communication Management Sales Business Strategy Operations Project Management Business Law Business Analytics & Intelligence Human Resources Industry E-Commerce Media Real Estate Other Business
Finance & Accounting
Accounting & Bookkeeping Compliance Cryptocurrency & Blockchain Economics Finance Finance Cert & Exam Prep Financial Modeling & Analysis Investing & Trading Money Management Tools Taxes Other Finance & Accounting
IT & Software
IT Certifications Network & Security Hardware Operating Systems & Servers Other IT & Software
Office Productivity
Microsoft Apple Google SAP Oracle Other Office Productivity
Personal Development
Personal Transformation Personal Productivity Leadership Career Development Parenting & Relationships Happiness Esoteric Practices Religion & Spirituality Personal Brand Building Creativity Influence Self Esteem & Confidence Stress Management Memory & Study Skills Motivation Other Personal Development
Design
Web Design Graphic Design & Illustration Design Tools User Experience Design Game Design 3D & Animation Fashion Design Architectural Design Interior Design Other Design
Marketing
Digital Marketing Search Engine Optimization Social Media Marketing Branding Marketing Fundamentals Marketing Analytics & Automation Public Relations Paid Advertising Video & Mobile Marketing Content Marketing Growth Hacking Affiliate Marketing Product Marketing Other Marketing
Lifestyle
Arts & Crafts Beauty & Makeup Esoteric Practices Food & Beverage Gaming Home Improvement & Gardening Pet Care & Training Travel Other Lifestyle
Photography & Video
Digital Photography Photography Portrait Photography Photography Tools Commercial Photography Video Design Other Photography & Video
Health & Fitness
Fitness General Health Sports Nutrition & Diet Yoga Mental Health Martial Arts & Self Defense Safety & First Aid Dance Meditation Other Health & Fitness
Music
Instruments Music Production Music Fundamentals Vocal Music Techniques Music Software Other Music
Teaching & Academics
Engineering Humanities Math Science Online Education Social Science Language Learning Teacher Training Test Prep Other Teaching & Academics
Web Development JavaScript React Angular CSS Node.Js Typescript HTML5 PHP
AWS Certification Microsoft Certification AWS Certified Solutions Architect - Associate AWS Certified Cloud Practitioner CompTIA A+ Amazon AWS Cisco CCNA CompTIA Security+ Microsoft AZ-900
Microsoft Power BI SQL Tableau Data Modeling Business Analysis Data Analysis Data Warehouse Business Intelligence Blockchain
Unity Unreal Engine Game Development Fundamentals C# 3D Game Development C++ Unreal Engine Blueprints 2D Game Development Mobile Game Development
Google Flutter iOS Development Android Development Swift React Native Dart (programming language) Kotlin SwiftUI Mobile App Development
Graphic Design Photoshop Adobe Illustrator Drawing Canva Digital Painting InDesign Design Theory Procreate Digital Illustration App
Life Coach Training Neuro-Linguistic Programming Personal Development Personal Transformation Life Purpose Mindfulness Sound Therapy Emotional Intelligence Coaching
Business Fundamentals Entrepreneurship Fundamentals Freelancing Business Strategy Online Business Startup Business Plan Blogging Amazon Kindle Direct Publishing (KDP)
Digital Marketing Social Media Marketing Marketing Strategy Internet Marketing Copywriting Email Marketing Google Analytics Startup Advertising Strategy

DevelopmentData ScienceBig Data

Big Data Analytics con Python e Spark 2.4: il Corso Completo

Impara ad analizzare e processare i Big Data con Python e Spark ( PySpark )
Rating: 3.8 out of 53.8 (187 ratings)
1,131 students
Created by Giuseppe Gullo, Profession AI
Last updated 11/2020
Italian
Italian [Auto]

What you'll learn

  • Utilizzare Python e Spark per Analizzare i Big Data
  • Utilizzare MLlib per Creare Modelli di Machine Learning con i Big Data
  • Installare e Configurare PySpark su una Macchina Virtuale
  • Installare e Configurare PySpark con Amazon EC2
  • Creare un Cluster di Macchine per PySpark con Amazon EMR
  • Utilizzare gli Amazon Web Service (AWS) per l'Analisi di Big Data
  • Imparare ad Utilizzare DataBricks per l'Analisi di Big Data
  • Utilizzare l'RDD per Elaborare Dati in Parallelo
  • Utilizzare il DataFrame per Processare Dati in Maniera Efficiente
  • Utilizzare Spark Streaming per elaborare flussi di dati in Tempo Reale
  • Creare un Modello di Sentiment Analysis con il Dataset di Yelp (5 GB !)
  • Processare Tweets pubblicati su Twitter in Tempo Reale

Requirements

  • Nessun prerequisito particolare è richiesto, solo passione e voglia di imparare a lavorare con i Big Data

Description

Impara a utilizzare le Ultime Tecnologie per l'Analisi dei Big Data con il linguaggio di Programmazione più popolare al mondo - Spark e Python !

Siamo entrati nell'era dei Big Data, oggi i dati sono il nuovo petrolio e sapere come elaborarli e analizzarli vuol dire avere un posto di lavoro garantito in un futuro molto prossimo e un vantaggio competitivo enorme rispetto ai rivali in affari.

In questo corso impareremo a lavorare con i Big Data utilizzando Spark, il framework per il calcolo distribuito più popolare al mondo, usato in produzione da giganti come Amazon, Microsoft, Oracle, Verizon e Cisco.


Cosa faremo durante il corso ?

Nella prima sezione del corso introdurre l'argomento Big Data, vedendo cosa sono, da dover arrivano e come possono essere sfruttati.

Vedremo quali sono le principali tecnologie utilizzate per i Big Data: Apache Hadoop, Hadoop MapReduce e Spark, chiarendone le differenze, i punti deboli e i punti di forza.

Nella seconda sezione vedremo come installare e configurare Spark su una macchina locale, prima usando VirtualBox per creare una macchina simulata sulla quale installare Ubuntu, poi creando una macchina remota sfruttando gli Amazon Web Service, nello specifico AWS EC2.

Nella terza sezione impareremo a creare un cluster di macchine con Spark e lo faremo in due modi differenti:

  • Usando AWS EMR (Elastic MapReduce)

  • Usando DataBricks, piattaforma per l'analisi dei Big Data co-fondata dallo stesso creatore di Spark.

Nella quarta sezione studieremo la principale struttura dati di Spark: il Resilient Distributed Dataset (RDD), introducendo la teoria del suo funzionamento per poi eseguire qualche esercizio pratico per studiarne le API.

Nella quinta sezione ci sporcheremo le mani con il primo laboratorio in cui analizzeremo un dataset contenente 22.5 milioni di recensioni di prodotti su Amazon.

Nella sesta sezione introdurremo una struttura dati a più alto livello che Spark mette a disposizione dalle sue versioni più recenti: il DataFrame, parleremo brevemente della suo funzionamento per poi vedere come può essere utilizzato nella pratica. Vedremo anche come creare una tabella SQL partendo da un DataFrame per poi interrogarla con query di selezione.

Nella settima sezione svolgeremo un secondo laboratorio, usando un DataFrame per analizzare ben 28 milioni di recensioni di film.

Nell'ottava sezione parleremo di serie storiche (time series) e analizzeremo le azioni di Apple dal 1980 ad oggi.

Nella nona sezione parleremo di Machine Learning, scoprendo come funziona e a cosa serve e studiando i due modelli di base rispettivamente per modelli di Regressione e Classificazione:

  • La Regressione Lineare

  • La Regressione Logistica

Al termine di questa sezione introdurremo il modulo MLlib (Machine Learning Library) di Spark, il quale ci permette di costruire modelli di Machine Learning distribuiti.

Nelle sezioni dieci e undici vedremo come utilizzare il modulo MLlib con le sue API per il Dataframe, per risolvere semplici problemi di regressione e classificazione, come:

  • Stimare il valore di abitazioni partendo dalle loro caratteristiche

  • Riconoscere un tumore al seno maligno da un'agobiopsia

Nella sezione dodici utilizzeremo le conoscenze acquisite sul Machine Learning e MLlib per costruire un modello di Sentiment Analysis utilizzando il dataset di Yelp, il quale contiene oltre 5 GB di recensioni di locali e attività commerciali. 

Per addestrare il modello di Machine Learning sull'intero dataset così grande utilizzeremo un cluster AWS EMR, imparando a configurare un cluster e a importare grandi quantità di dati nel Hadoop File System (HDFS) da un bucket S3 utilizzando l'utility s3-dist-cp.

Nella nona sezione introdurremo uno delle estensioni più hot di Spark: Spark Streaming, che ci permette di analizzare ed elaborare flussi di dati in tempo reale !

Nella decima sezione svolgeremo un progetto usando Spark Streaming e le API di Twitter: monitoreremo tutti i tweets pubblicati in tempo reale, relativi ad un determinato argomento selezionato da noi, e creeremo un grafico interattivo con gli hashtags più popolari !


Perché seguire questo corso ?

I Big Data sono il futuro, sapere come sfruttarli sarà un vantaggio enorme, sia per un professionista che per un imprenditore, non perdere questa occasione !

Who this course is for:

  • Chiunque voglia imparare a elaborare grandi quantità di dati in maniera distribuita
  • Chiunque voglia imparare a sfruttare il vantaggio competitivo dei Big Data

Instructors

Giuseppe Gullo
Hacker, AI developer ed imprenditore digitale
Giuseppe Gullo
  • 4.5 Instructor Rating
  • 3,629 Reviews
  • 20,030 Students
  • 7 Courses

Cresciuto a pane e bit, ho cominciato a programmare a 13 anni, durante un periodo di convalescenza forzata dovuta ad un brutto incidente.

Durante la mia adolescenza ho utilizzato un mio approccio hacker all'apprendimento per passare da un argomento all'altro senza sosta, sviluppo web, programmazione software, sviluppo mobile per android ed iOS, sviluppo di videogame 2d e 3d con Unity.

Poco più che ventenne mi sono avvicinato all'intelligenza artificiale, ed è stato amore a prima vista.

Ho lavorato come sviluppatore indipendente e freelancer, creando diverse dozzine di servizi che hanno raggiunto centinaia di migliaia di persone in tutto il mondo.

Il mio life goal è riuscire a sfruttare le enormi potenzialità dell'AI per migliorare le condizioni di vita degli esseri umani. 


Profession AI
Impara oggi la professione di domani
Profession AI
  • 4.5 Instructor Rating
  • 3,629 Reviews
  • 20,030 Students
  • 7 Courses

ProfessionAI è la prima piattaforma di eLearning italiana destinata all'apprendimento delle nuove discipline legate all'Intelligenza Artificiale.

Seguendo i nostri corsi  potrai diventare un maestro del Machine Learning, un ninja del Deep Learning, creare il tuo Siri personale con il Natural Language Processing, insegnare alla tua auto a guidarsi da sola con la Computer Vision o più semplicemente avviare la tua nuova professione di Data Scientist, il mestiere più sexy del ventunesimo secolo.

L'intelligenza artificiale è il futuro ed il nostro scopo è permetterti di ottenere un posto in prima fila per la rivoluzione delle macchine intelligenti.

Top companies choose Udemy Business to build in-demand career skills.
NasdaqVolkswagenBoxNetAppEventbrite
  • Udemy Business
  • Teach on Udemy
  • Get the app
  • About us
  • Contact us
  • Careers
  • Blog
  • Help and Support
  • Affiliate
  • Investors
  • Terms
  • Privacy policy
  • Sitemap
  • Accessibility statement
Udemy
© 2022 Udemy, Inc.