Bayesian Machine Learning in Python: A/B Testing
What you'll learn
- Use adaptive algorithms to improve A/B testing performance
- Understand the difference between Bayesian and frequentist statistics
- Apply Bayesian methods to A/B testing
Requirements
- Probability (joint, marginal, conditional distributions, continuous and discrete random variables, PDF, PMF, CDF)
- Python coding with the Numpy stack
Description
This course is all about A/B testing.
A/B testing is used everywhere. Marketing, retail, newsfeeds, online advertising, and more.
A/B testing is all about comparing things.
If you’re a data scientist, and you want to tell the rest of the company, “logo A is better than logo B”, well you can’t just say that without proving it using numbers and statistics.
Traditional A/B testing has been around for a long time, and it’s full of approximations and confusing definitions.
In this course, while we will do traditional A/B testing in order to appreciate its complexity, what we will eventually get to is the Bayesian machine learning way of doing things.
First, we’ll see if we can improve on traditional A/B testing with adaptive methods. These all help you solve the explore-exploit dilemma.
You’ll learn about the epsilon-greedy algorithm, which you may have heard about in the context of reinforcement learning.
We’ll improve upon the epsilon-greedy algorithm with a similar algorithm called UCB1.
Finally, we’ll improve on both of those by using a fully Bayesian approach.
Why is the Bayesian method interesting to us in machine learning?
It’s an entirely different way of thinking about probability.
It’s a paradigm shift.
You’ll probably need to come back to this course several times before it fully sinks in.
It’s also powerful, and many machine learning experts often make statements about how they “subscribe to the Bayesian school of thought”.
In sum - it’s going to give us a lot of powerful new tools that we can use in machine learning.
The things you’ll learn in this course are not only applicable to A/B testing, but rather, we’re using A/B testing as a concrete example of how Bayesian techniques can be applied.
You’ll learn these fundamental tools of the Bayesian method - through the example of A/B testing - and then you’ll be able to carry those Bayesian techniques to more advanced machine learning models in the future.
See you in class!
"If you can't implement it, you don't understand it"
Or as the great physicist Richard Feynman said: "What I cannot create, I do not understand".
My courses are the ONLY courses where you will learn how to implement machine learning algorithms from scratch
Other courses will teach you how to plug in your data into a library, but do you really need help with 3 lines of code?
After doing the same thing with 10 datasets, you realize you didn't learn 10 things. You learned 1 thing, and just repeated the same 3 lines of code 10 times...
Suggested Prerequisites:
Probability (joint, marginal, conditional distributions, continuous and discrete random variables, PDF, PMF, CDF)
Python coding: if/else, loops, lists, dicts, sets
Numpy, Scipy, Matplotlib
WHAT ORDER SHOULD I TAKE YOUR COURSES IN?:
Check out the lecture "Machine Learning and AI Prerequisite Roadmap" (available in the FAQ of any of my courses, including the free Numpy course)
UNIQUE FEATURES
Every line of code explained in detail - email me any time if you disagree
No wasted time "typing" on the keyboard like other courses - let's be honest, nobody can really write code worth learning about in just 20 minutes from scratch
Not afraid of university-level math - get important details about algorithms that other courses leave out
Who this course is for:
- Students and professionals with a technical background who want to learn Bayesian machine learning techniques to apply to their data science work
Instructor
The Lazy Programmer is a seasoned online educator with an unwavering passion for sharing knowledge. With over 10 years of experience, he has revolutionized the field of data science and machine learning by captivating audiences worldwide through his comprehensive courses and tutorials.
Equipped with a multidisciplinary background, the Lazy Programmer holds a remarkable duo of master's degrees. His first foray into academia led him to pursue computer engineering, with a specialized focus on machine learning and pattern recognition. Undeterred by boundaries, he then ventured into the realm of statistics, exploring its applications in financial engineering.
Recognized as a trailblazer in his field, the Lazy Programmer quickly embraced the power of deep learning when it was still in its infancy. As one of the pioneers, he fearlessly embarked on instructing one of the first-ever online courses on deep learning, catapulting him to the forefront of the industry.
Beyond the realm of education, the Lazy Programmer possesses invaluable hands-on experience that has shaped his expertise. His ventures into online advertising and digital media have yielded astounding results, propelling click-through rates and conversion rates to new heights and boosting revenues by millions of dollars at the companies he's worked for. As a full-stack software engineer, he boasts intimate familiarity with an array of backend and web technologies, including Python, Ruby on Rails, C++, Scala, PHP, Javascript, SQL, big data, Spark, and Redis.
While his achievements in the field of data science and machine learning are awe-inspiring, the Lazy Programmer's intellectual curiosity extends far beyond these domains. His fervor for knowledge leads him to explore diverse fields such as drug discovery, bioinformatics, and algorithmic trading. Embracing the challenges and intricacies of these subjects, he strives to unravel their potential and contribute to their development.
With an unwavering commitment to his students and a penchant for simplifying complex concepts, the Lazy Programmer stands as an influential figure in the realm of online education. Through his courses in data science, machine learning, deep learning, and artificial intelligence, he empowers aspiring learners to navigate the intricate landscapes of these disciplines with confidence.
As an author, mentor, and innovator, the Lazy Programmer leaves an indelible mark on the world of data science, machine learning, and beyond. With his ability to demystify the most intricate concepts, he continues to shape the next generation of data scientists and inspires countless individuals to embark on their own intellectual journeys.