ANSYS Workbench 2020 R1 - design and simulation
What you'll learn
- Ansys workbench
- finite elements analysis
- 3d modeling
Requirements
- the course is from sctrach
Description
COURSE OVER VIEW
In this course, we will learn the basics of Ansys Workbench. Starting with introduction, we will have a quick review of actual analysis that will be covered through the course. In next step, we will launch Ansys Workbench, see the basic interface, leading to multiple steps starting with engineering data, then geometry (Space Claim), and then model (Ansys Mechanical). Multiple type of analysis will be taught including Static Structure, Modal, Harmonic Frequency, Steady State Thermal, Transient Thermal and Fatigue Analysis.
#AulaGEO
Lesson 1 - Introduction & Inspiration
In this session, we will have quick introduction and inspiration. We will see the overall flow of this course, starting from Engineering Data; we will create geometries using Space Claim and then analyze the model using Ansys Mechanical. We will have a quick review of different problem statements that will be solved in this course along with their simulations at a glance.
Lesson 2 - Units and Interface
In this session, we will see the basic interface of Ansys Workbench. Afterwards, we will see how to set units as default, how to suppress units and how to set units temporarily for specific project only.
Lesson 3 – Engineering Data
In this session, we will learn the first step of analysis, i.e. Engineering Data Tab. We can assign specific material to our model in Engineering Data. There is a preset library of a variety of materials in Ansys Workbench. We can monitor and change different property values of selected material as per requirement.
Lesson 4 – Geometry - Space Claim Introduction
In this session, we will learn about the second step of analysis, i.e. Geometry. In Ansys Workbench 2020 R1, geometries are created in Space Claim. We will have a slight introduction of Space Claim software and learn soft shortcuts necessary to improve the speed of work flow.
Lesson 5 – Geometry - 2D Tools
In this session, we will learn how to access and use various 2D tools in Space Claim, as it is an essential to complete the geometry and move towards the next step of analysis.
Lesson 6 – Geometry - 3D Tools
In this session, we will learn how to access and use some 3D tools in Space Claim. Starting with Pull command we will learn how to revolve, sweep and blend geometries.
Lesson 7 – Geometry - 3D Patterns
In this session, we will learn how to create patterns in Space Claim. The patterns can be created for 2D or 3D and pattern type can be linear , polar or rectangular as per requirement.
Lesson 8 –Beam under uniformly distributed load
In this session, we will analyze a beam under uniformly distributed load. We will solve for required calculations mentioned in problem statement and compare the results achieved from Ansys Workbench and analytical method. Furthermore, we will simulate the process and export as MP4 file.
Lesson 9 –Beam under point load
In this session, we will analyze a beam under point load. We will solve for required calculations mentioned in problem statement and compare the results achieved from Ansys Workbench and analytical method. Furthermore, we will simulate the process and export as MP4 file.
Lesson 10 –Beam under combined loads
In this session, we will analyze a beam under combined loads. We will solve for required calculations mentioned in problem statement and compare the results achieved from Ansys Workbench and analytical method. Furthermore, we will simulate the process and export as MP4 file.
Lesson 11 – Truss Analysis (line body)
In this session, we will analyze a truss and assign L beam profile to it. We will solve for required calculations mentioned in problem statement and compare the results achieved from Ansys Workbench and analytical method. Furthermore, we will simulate the process and export as MP4 file.
Lesson 12 – Beam Analysis (line body)
In this session, we will analyze a beam under line body and give it a square beam profile. We will solve for required calculations mentioned in problem statement and compare the results achieved from Ansys Workbench and analytical method. Furthermore, we will simulate the process and export as MP4 file.
Lesson 13 – Steady State Thermal Analysis - Heat Sink
In this session, we will do steady state thermal analysis for heat sink. We will solve for required calculations mentioned in problem statement and compare the results achieved from Ansys Workbench and analytical method. Furthermore, we will simulate the process and export as MP4 file.
Lesson 14 – Transient Thermal Analysis - Heat Sink
In this session, we will do transient thermal analysis for heat sink. We will solve for required calculations mentioned in problem statement and compare the results achieved from Ansys Workbench and analytical method. Furthermore, we will simulate the process and export as MP4 file.
Lesson 15 – Modal Analysis - Harmonic Response
In this session, we will analyze a plate and perform modal analysis. We will solve for required calculations mentioned in problem statement and compare the results achieved from Ansys Workbench and analytical method. Furthermore, we will simulate the process and export as MP4 file.
Lesson 16 – Fly Wheel - Effect of rotational velocity
In this session, we will model and analyze a fly wheel to see the effect of rotational velocity on it. We will solve for required calculations mentioned in problem statement and compare the results achieved from Ansys Workbench and analytical method. Furthermore, we will simulate the process and export as MP4 file.
Lesson 17 – Factor of Safety – Static Load
In this session, we will find factor of safety for a geometry under static load. We will solve for required calculations mentioned in problem statement and compare the results achieved from Ansys Workbench and analytical method. Furthermore, we will simulate the process and export as MP4 file.
Lesson 18 – Factor of Safety – Cyclic Load
In this session, we will find factor of safety for a geometry under cyclic load. We will solve for required calculations mentioned in problem statement and compare the results achieved from Ansys Workbench and analytical method. Furthermore, we will simulate the process and export as MP4 file.
Who this course is for:
- 3d modelers
- mechanical engineers
- civil engineers
- 3d designers
Instructor
Welcome to our Academy platform, your ultimate destination for online courses covering a wide range of subjects, including GIS, CAD, BIM and Digital Twins applied to the land development environment. We are committed to providing comprehensive education and empowering individuals to excel in various domains related to infrastructures. Whether you are a student, a professional seeking to expand your knowledge, or an enthusiast passionate about these subjects, our platform offers a diverse selection of courses tailored to meet your specific needs.
At our Academy, we recognize the significance of these disciplines in the infrastructures life cycle, from initial design to project completion. To ensure the highest quality of education, we have collaborated with renowned industry expert Golgi Alvarez and assembled a team of AulaGEO Academy experts to create, adapt to English and/or Spanish languages and curate cutting-edge courses.
Architecture – Engineering – Construction – Operation (AECO) is a harmonious blend of creativity and technical expertise. Our AECO courses encompass a broad range of topics, from Civil design principles to sustainable construction practices. You will gain proficiency in conceptualizing and developing designs that fulfill aesthetic, functional, structural and regulatory requirements. Our instructors, including renowned expert Golgi Alvarez, will guide you through the design process, helping you refine your visualization and communication skills. Furthermore, you will acquire a solid foundation in structural analysis and design, ensuring the safety and stability of your land development creations.
Geographic Information Systems (GIS) have revolutionized the way we collect, analyze, and visualize spatial data. Our GIS courses explore the power of GIS technology for mapping, spatial analysis, and data management. Using software like ArcGIS Pro and QGIS you will gain insights into interpreting and manipulating geospatial data, designing interactive maps, conducting spatial queries, and leveraging GIS for various applications, including land management, environmental analysis, and urban planning. Our GIS courses provide a competitive advantage in fields that rely on spatial data analysis and informed decision-making.
Civil Engineering plays a pivotal role in the design and construction of infrastructure. Our engineering courses cover a broad spectrum of topics, including structural engineering, transportation systems, and urban design. Using software like AutoDesk Civil3D and Bentley OpenRoads you will learn the principles and techniques required to design, construct, and maintain buildings, bridges, roads, and more. Our experienced instructors bring their industry expertise to the virtual classroom, providing valuable insights
Computer-Aided Design (CAD) is the backbone of modern design processes, enabling precise and efficient creation of 2D and 3D models. Our CAD courses cover a wide array of software applications, including AutoCAD, Microstation, and CREO Parametric. From fundamental concepts to advanced techniques, you will acquire the skills necessary to create, modify, and analyze complex designs, ensuring accuracy and optimizing workflows. Our courses cater to beginners seeking a solid foundation as well as experienced professionals aiming to enhance their expertise.
Building Information Modeling (BIM) has transformed the architecture, engineering, and construction industries by facilitating collaborative and data-driven project management. Our BIM courses delve into the principles, workflows, and software tools utilized in BIM, such as Revit and SYNCHRO. You will learn to create intelligent 3D models that encompass architectural, structural, and MEP (mechanical, electrical, and plumbing) systems. Additionally, you will discover techniques for accurate quantity extraction, clash detection, and generating construction documents. Mastery of BIM equips you to contribute effectively to multidisciplinary project teams and streamline project delivery.
ARTS & DEVELOPMENT
Additionally, as part of our social responsibility, some of our courses have been made available to development projects in certain countries. This has allowed us to benefit communities and replicate our methodology, leading to the creation of new courses in response to demand in areas such as graphic design, art, and social disciplines.
Copyright:
For copyright management and DMCA purposes, all the content of AulaGEO Academy is managed by Golgi Alvarez.