Udemy
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
Development
Web Development Data Science Mobile Development Programming Languages Game Development Database Design & Development Software Testing Software Engineering Software Development Tools No-Code Development
Business
Entrepreneurship Communication Management Sales Business Strategy Operations Project Management Business Law Business Analytics & Intelligence Human Resources Industry E-Commerce Media Real Estate Other Business
Finance & Accounting
Accounting & Bookkeeping Compliance Cryptocurrency & Blockchain Economics Finance Finance Cert & Exam Prep Financial Modeling & Analysis Investing & Trading Money Management Tools Taxes Other Finance & Accounting
IT & Software
IT Certifications Network & Security Hardware Operating Systems & Servers Other IT & Software
Office Productivity
Microsoft Apple Google SAP Oracle Other Office Productivity
Personal Development
Personal Transformation Personal Productivity Leadership Career Development Parenting & Relationships Happiness Esoteric Practices Religion & Spirituality Personal Brand Building Creativity Influence Self Esteem & Confidence Stress Management Memory & Study Skills Motivation Other Personal Development
Design
Web Design Graphic Design & Illustration Design Tools User Experience Design Game Design 3D & Animation Fashion Design Architectural Design Interior Design Other Design
Marketing
Digital Marketing Search Engine Optimization Social Media Marketing Branding Marketing Fundamentals Marketing Analytics & Automation Public Relations Paid Advertising Video & Mobile Marketing Content Marketing Growth Hacking Affiliate Marketing Product Marketing Other Marketing
Lifestyle
Arts & Crafts Beauty & Makeup Esoteric Practices Food & Beverage Gaming Home Improvement & Gardening Pet Care & Training Travel Other Lifestyle
Photography & Video
Digital Photography Photography Portrait Photography Photography Tools Commercial Photography Video Design Other Photography & Video
Health & Fitness
Fitness General Health Sports Nutrition & Diet Yoga Mental Health Martial Arts & Self Defense Safety & First Aid Dance Meditation Other Health & Fitness
Music
Instruments Music Production Music Fundamentals Vocal Music Techniques Music Software Other Music
Teaching & Academics
Engineering Humanities Math Science Online Education Social Science Language Learning Teacher Training Test Prep Other Teaching & Academics
Web Development JavaScript React CSS Angular Node.Js PHP HTML5 Typescript
AWS Certification Microsoft Certification AWS Certified Solutions Architect - Associate AWS Certified Cloud Practitioner CompTIA A+ Amazon AWS Cisco CCNA CompTIA Security+ Microsoft AZ-900
Microsoft Power BI SQL Tableau Data Modeling Business Analysis Business Intelligence MySQL Qlik Sense Data Analysis
Unity Unreal Engine Game Development Fundamentals C# 3D Game Development C++ Unreal Engine Blueprints 2D Game Development Mobile Game Development
Google Flutter iOS Development Android Development Swift React Native Dart (programming language) Kotlin Mobile App Development SwiftUI
Graphic Design Photoshop Adobe Illustrator Drawing Digital Painting Canva InDesign Character Design Procreate Digital Illustration App
Life Coach Training Personal Development Neuro-Linguistic Programming Personal Transformation Life Purpose Mindfulness Sound Therapy Coaching CBT Cognitive Behavioral Therapy
Business Fundamentals Entrepreneurship Fundamentals Freelancing Business Strategy Startup Business Plan Online Business Blogging Leadership
Digital Marketing Social Media Marketing Marketing Strategy Google Analytics Internet Marketing Copywriting Email Marketing Startup YouTube Marketing
2022-07-01T19:49:35Z

DevelopmentProgramming LanguagesPandas

Data Science: Analiza danych w Python i PANDAS

Otwórz sobie drzwi do Data Science! Przenieś się na wyższy poziom i pracuj jak profesjonalny analityk danych!
Rating: 4.8 out of 54.8 (981 ratings)
8,044 students
Created by Rafał Mobilo
Last updated 6/2022
Polish

What you'll learn

  • Samodzielnie zainstalujesz Anacode i Jupyter Notebook
  • Dasz radę rozwiązywać problemy dot. instalacji np. za pomocą linii komend i conda
  • Dowiesz się czym jest PANDAS
  • Będziesz bardzo dobrze znać obiekty PANDAS takie jak: Data Series, Data Frame
  • Będziesz umieć pracować z danymi i wykonywać na nich najważniejsze operacje
  • Będziesz importować i eksportować dane - również do EXCELA
  • Będziesz prezentować dane na wykresach
  • Dane będziesz indeksować, filtrować, wybierać, modyfikować...
  • Zbudujesz grupowania, agregacje i tabele przestawne
  • Będziesz przekształcać dane, modyfikować zawartość całych kolumn, będziesz łączyć dane z wielu kolumn

Requirements

  • Podstawowa znajomość Python (zobacz kurs "Python dla początkujących")
  • Doświadczenie w analizie danych w innym narzędziu np. Excel lub Google Sheets
  • Komputer z zainstalowanym środowiskiem (kurs zawiera opis instalacji na Windows)
  • Chęć wkroczenia w świat Data Science!
  • Znajomość baz danych - mile widziana, ale niekonieczna

Description

Ten kurs wchodzi w skład serii kursów o Pythonie. Wybierz właściwy, zależnie od stopnia znajomości Pythona i zainteresowań.

Dlaczego ten kurs?

  • Bo podstawą do stosowania Pythona w Data Science jest właśnie moduł PANDAS. W pierwszym lepszym przykładzie Machine Learning znajdziesz obiekty, które są omawiane tu na tym kursie

  • Bo dane, które wczytujesz i chcesz analizować trzeba najpierw oczyścić i przetworzyć i  w tym również wykorzystuje się PANDAS

  • Bo każda lekcja ma quiz i praktyczne zadania do samodzielnego rozwiązania - zdaniem autora samo patrzenie nie wystarcza żeby się nauczyć - praktyka jest konieczna

  • Bo kurs jest dość szczegółowy - ma ponad 13 godzin nagrań a i tak porusza tylko te najważniejsze aspekty pracy z danymi

  • Bo do kursu masz dołączone materiały do wykonywania ćwiczeń - specjalnie dobrane zbiory pozwalają praktycznie stosować możliwości poznawanych poleceń

  • Bo tylko na takim praktycznym kursie masz szansę rzeczywiście czegoś się nauczyć - a sądzę, że to właśnie Twój cel!

  • Naukę możesz kontynuować na innych kursach tego samego autora

To nie jest kurs dla zupełnie początkujących. Wśród wymogów znajdziesz przynajmniej podstawową znajomość Pythona oraz chociaż ogólną wiedzę o analizie danych. Ale bez obaw!

  • Jeśli chodzi o wiedzę z zakresu programowania w Pythonie – możesz ją zdobyć na kursie „Python dla początkujących”. Jeśli już używasz Pythona, możesz przejrzeć sam spis treści tego kursu i zweryfikować, czy znasz te tematy.

  • Jeśli chodzi o podstawową znajomość analizy danych, mam na myśli typowe czynności, jakie wykonujemy np. w Excelu. Tam też dane się importuje, przetwarza i analizuje. W tym kursie generalnie robimy to samo, ale w zupełnie inny sposób. Dlatego znajomość np. Excela będzie bardzo mile widziana.

  • Po tym kursie możesz kontynuować naukę na kursie tego samego autora "Python dla średnio zaawansowanych"

Kurs dość dokładnie omawia wszystkie tematy i właściwie nie ma w nim teorii. Praktycznie tylko video, quizy i zadania do samodzielnego rozwiązania.

Kurs jest dość intensywny. Każde nagranie skupia się na innym temacie i nie tracimy czasu. Główna zaleta kursu online jest taka, że jeśli chcesz aby Ci coś powtórzyć, to nie musisz o to specjalnie prosić… wystarczy skorzystać z przycisku „cofnij 15 sekund wstecz”. Z kolei jeśli materiał już znasz i chcesz go tylko przesłuchać, możesz zwiększyć lub zmniejszyć jego prędkość. O ile tylko nie denerwuje Cię zmiana głosu na bardziej piskliwy, to… czemu nie – korzystaj!

Zaczynamy od skonfigurowania środowiska. Tutaj jest to zrobione w oparciu o system Windows. Jeżeli korzystasz z Linux lub MacOS, to kroki do wykonania są podobne, ale w materiałach ich nie znajdziesz. Jeśli masz już zainstalowane środowisko u siebie to oczywiście ten blok możesz przerobić pobieżnie. Chcę żeby pracowało Ci się wygodnie, dlatego nie tylko instalujemy Jupyter Notebook, ale jeszcze dodatkowo omawiamy jak pracować z nim wydajnie. Jak go konfigurować, dodawać do niego pakiety, jak korzystać ze skrótów klawiaturowych itp. Wiem, że kiedy „palisz się” do analizy danych ten wstęp może Ci się wydawać przydługawy. Możesz w takim przypadku przeskoczyć część tematów i kontynuować lekcje poświęcone PANDAS, a tu wrócisz później. Zdecydowałem się dodać te lekcje po to, żeby ułatwić Ci pracę z PANDAS na własną rękę. Zwłaszcza te kilka lekcji poświęcone tematyce zaawansowanej konfiguracji  środowiska z linii komend przydadzą się, kiedy napotkasz jakieś problemy, a znajdowane na forach odpowiedzi będą mówiły o instalacji pakietu przez conda…

Żeby dane analizować, trzeba je mieć. Wszystkie pliki prezentowane na kursie jak i potrzebne do rozwiązywania zadań są dołączone do kursu. W większości przypadków podaję też skąd te materiały pochodzą i moim zdaniem ich dystrybucja nie jest zabroniona – korzystaj do woli, albo szukaj innych na własną rękę. W Internecie jest naprawdę mnóstwo ciekawych i darmowych zbiorów.

Potem właściwie zaczynamy najważniejszą część kursu opowiadającą o PANDAS. Pełna nazwa PANDAS to Python and data analysis i logo tego pakietu to kilka wykresików, ale… sam powiedz z czym się graficznie kojarzy nazwa PANDAS…

Kluczowa w PANDAS i analizie danych jest kolumna danych – tutaj zwana Data Series. Ten obiekt trzeba bardzo dobrze poznać, bo inne obiekty i polecenia bardzo mocno go wykorzystują. Kiedy sam uczyłem się PANDAS bardzo mnie to denerwowało, że tyle czasu uczyłem się tylko o przetwarzaniu pojedynczej kolumny, ale uwierz mi – to nie będzie stracony czas.

Potem przechodzimy do zbioru kolumn, co w PANDAS nazywa się Data Frame. Tu będzie już ciekawiej, bo da się obserwować na raz więcej kolumn a więc i więcej danych. Na tym etapie możesz już pomyśleć o budowaniu analiz własnych zbiorów danych.

Dalej opowiemy o modyfikacji danych. Można by myśleć, że przy analizie danych, nie trzeba ich modyfikować i ogólnie chyba rzeczywiście tak jest. Ale warto wiedzieć jak dodać wiersz, kolumnę, przebudować indeks, bo to też metody na przygotowanie danych do analizy.

W następnym etapie jesteśmy gotowi do pierwszych analiz. Indeksy będą mogły już składać się z wielu poziomów, będziemy je przerzucać z wierszy do kolumn i odwrotnie, zbudujemy tabele przestawne, albo właśnie przekształcimy dane z postaci tabeli danych do normalnej tabeli.

Kolejny krok to grupowanie danych i agregacja danych. Posiadając zagregowane dane możesz analizować je w mniejszych fragmentach, a dzięki temu możesz wykrywać zależności w tych danych i ich charakterystyczne dane. Bez tego wszystkie wyniki byłyby uśrednione na cały zbiór danych i przez to najprawdopodobniej zupełnie bez wartości, a tak możesz zobaczyć charakterystyczne cechy  zakupów w poszczególnych regionach czy inne zainteresowania w zależności od wieku i płci itp.

Rzadko kiedy wszystko to, co jest potrzebne jest w jednym miejscu, często jedna sytuacja jest opisywana przez kilka zbiorów danych. Dlatego właśnie mamy specjalną sekcję dotyczącą łączenia danych z różnych źródeł. Myśl o tym jak o łączeniu tabel w bazie danych lub łączeniu arkuszy w skoroszycie.

Kolejny temat to wykresy. Przedstawiamy tu kilka różnych rodzajów wykresów i zmieniamy ich wygląd modyfikując ich mniej i bardziej zaawansowane parametry, ale nie ma co ukrywać – za wykresy w PANDAS odpowiadają funkcje z matplotlib. Informacje z tego kursu będą wystarczające do samodzielnego zbudowania wykresów i zaprezentowania na nich analizowanych danych, ale moduł matplotlib nie jest tutaj omawiany – to duży temat na osobny kurs.

Naukę kończymy dodatkowymi materiałami dotyczącymi pobierania i zapisywania danych na zewnątrz PANDAS, włączając w to dane pobierane z Internetu lub wczytywane i zapisywane w plikach excel.

Zapraszam do nauki. Otwórz sobie drzwi do Data Science!

Who this course is for:

  • Analitycy danych, którzy analizy przeprowadzają w innych narzędziach niż Python i PANDAS
  • Chętni do poważnego zajęcia się Data Science
  • Rozpoczynający naukę Machine Learning i sztucznej inteligencji

Instructor

Rafał Mobilo
Microsoft Certified Trainer
Rafał Mobilo
  • 4.8 Instructor Rating
  • 12,074 Reviews
  • 45,702 Students
  • 23 Courses

EN

Microsoft Certified Trainer. Programmer, database administrator, trainer and consultant. The  main areas of interest are database administration and design, automation with PowerShell ,Python and Bash, machine learning, analysis and presentation of data.

Experienced e-learning and distance learning tutor. Mentor of e-learning programs. Blogger.

Worked with, or teached for such companies as ING, Intel, Cadbury, Bank PeKaO, Volvo, UPC, ZUS, Polish Post and many more...

PL

Microsoft Certified Trainer. Programista, administrator baz danych, trener i konsultant. Główne specjalności to administracja i programowanie baz danych, automatyzacja z wykorzystaniem PowerShell, Python, Bash oraz machine learning, analiza i prezentacja danych.

Doświadczony trener szkoleń e-learning. Mentor wdrażania programów e-learning.

Pracował/pracuje/prowadził szkolenia dla takich firm i instytucji jak ING, Intel, Cadbury, Bank PeKaO, Volvo, UPC, ZUS, Poczta Polska i wiele innych...

Top companies choose Udemy Business to build in-demand career skills.
NasdaqVolkswagenBoxNetAppEventbrite
  • Udemy Business
  • Teach on Udemy
  • Get the app
  • About us
  • Contact us
  • Careers
  • Blog
  • Help and Support
  • Affiliate
  • Investors
  • Impressum Kontakt
  • Terms
  • Privacy policy
  • Cookie settings
  • Sitemap
  • Accessibility statement
Udemy
© 2022 Udemy, Inc.