Análisis avanzado de datos atípicos y outliers en R y Matlab
What you'll learn
- 📚 Todos los conceptos del análisis robusto de datos
- 🗝 Acceso al grupo privado para dudas
- 👩💻 Cómo identificar y lidiar con datos atípicos
- 💻 Funcionamiento de los métodos de detección de atípicos
- ✍️ Ejemplos prácticos en R y Matlab, explicados paso a paso
- 🤓 Qué métodos usar en la práctica
- 🧧 Certificado válido y reconocido
- 🎁 Regalos al finalizar
Requirements
- Conocimientos básicos de Estadística.
Description
El análisis robusto de datos y la detección de atípicos (outliers) son cruciales en Estadística, Análisis de datos, Minería de datos, Aprendizaje automático, Inteligencia Artificial, Reconocimiento de patrones, Clasificación, Componentes Principales, Regresión, Big Data y cualquier campo relacionado con los datos.
Los investigadores, estudiantes, analistas de datos y, en su mayoría, cualquier persona que esté tratando con datos reales, deben ser conscientes del problema con los valores atípicos (o outliers) y deben saber cómo tratar este problema y qué métodos robustos se deben utilizar. Y es que la gran mayoría de algoritmos de Machine Learning son capaces de detectar características comunes a la gran mayoría de los datos, pero muchas veces se ven confundidos o incluso ignoran esos datos atípicos, que no deben ser ignorados en condiciones donde peligra la seguridad de las personas, como es el caso de análisis de datos médicos, el mundo de internet de las cosas, o la seguridad en las empresas.
¿Qué ocurriría si por ignorar un dato anómalo se propagara un virus por todo el mundo? Tendríamos una pandemia, como la del COVID19, la cual si no se hubieran ignorado las señales de outliers que detectaban las redes neuronales, se podría haber actuado ante ella con antelación.
¿Qué ocurriría si ignoráramos alguna señal de un sistema de una ciudad inteligente? Se nos podría pasar por alto una fuga de gas
¿Qué ocurriría si por ignorar una alarma, se nos pasara un meteorito que viene hacia la tierra? Tendríamos que llamar a Bruce Willis, para salvarnos del Armageddon
Con este curso serás experto en análisis robusto de datos, en la detección y el tratamiento de los datos atípicos, tanto aprendiendo los conceptos teóricos, cómo teniendo a tu disposición los algoritmos implementados de manera práctica con dos lenguajes diferentes para que elijas el que más te conviene: R-Studio y Matlab.
Además tendrás acceso a una comunidad para dudas, donde están todos los estudiantes y puedes preguntar lo que quieras acerca del análisis de datos atípicos.
Los códigos de implementación de los ejemplos están disponibles para ti en el repositorio abierto de Github para que los puedas descargar y usar.
Además, tenemos dos secciones de conceptos básicos que te servirán de ayuda para recordar algunas nociones necesarias para entender los métodos de detección de atípicos.
Con este curso podrás entender y saber tratar con uno de los temas más importantes de hoy en día tanto académicamente, como en la industria y en el análisis de datos o el machine learning. Los ejemplos te servirán para visualizar esta importancia del análisis de datos atípicos y outliers así como también de guía para poder llevar a cabo luego estos análisis por ti mismo.
Who this course is for:
- Analistas de datos.
- Científicos de datos.
- Estudiantes.
- Investigadores.
Instructors
Hola a todos, soy Eli, la creadora de Aprende con Eli. Soy una joven profesora apasionada del Análisis de Datos. Sobre mi formación, soy Licenciada en Matemáticas por la Universidad de La Habana, ciudad en la que nací y crecí hasta que después de graduarme gané una beca para hacer el máster en la Universidad Carlos III de Madrid, España. Y luego, terminé haciendo el doctorado en la especialidad de Estadística. Actualmente me dedico a la investigación de métodos robustos de detección de atípicos, un campo que tiene muchísima importancia en Medicina, Neurociencia, Química, Geoquímica, Finanzas, entre muchos otros. Además de trabajar en investigación, soy profesora en la Universidad Carlos III de Madrid, donde tengo más de 10 años de experiencia impartiendo la asignatura de Estadística. He tenido alumnos de Ingeniería Informática, Telecomunicaciones, Industriales, Mecánica, Eléctrica, Administración de Empresas y ADE+Derecho. Me encanta todo lo relacionado con Data Mining, detección de atípicos, clustering, clasificación, regresión lineal, regresión logística, análisis discriminante, Machine Learning, Artificial Intelligence y Big Data, especialmente en R, Matlab o Python.
Sobre mí personalmente puedo decirles que también tengo una vena artística, me encanta tocar la guitarra, cantar covers, dibujar, escribir y la fotografía. Soy siempre muy positiva e intento no perder nunca la motivación por alcanzar mis objetivos. Y otra de mis pasiones es enseñar, ver que los estudiantes no solo "aprueban" sino que realmente aprenden. Eso me ha motivado crear estos cursos en Udemy, el saber que puedo enseñar la Estadística de una forma más práctica y más amena, porque a lo largo de mi experiencia docente he aprendido que los alumnos no suelen entender los conceptos porque no se explica a veces la conexión que hay entre todos ellos y el por qué es importante entenderlos.
Espero que te animes a pasar mis cursos y que te ayuden con tus objetivos académicos. En mi web Aprende con Eli, puedes obtener ¡2 libros gratis! Además encontrarás todos los cursos con descuento y un blog donde debatimos cosas interesantes como por ejemplo ¿cuál es la diferencia entre machine learning e inteligencia artificial?
¡Nos vemos en clase!
¿Te interesa la Ciencia de Datos, los modelos estadísticos o la Inteligencia Artificial?
¿Te gustaría aprender a analizar datos con R o Python?
¿Necesitas ayuda para encontrar trabajo como científico o analista de datos?
¿Tienes problemas para poder avanzar en tu proyecto de Ciencia de Datos?
¿Quieres aprender sobre estas disciplinas y no sabes por dónde empezar?
Si has contestado que sí a alguna de estas preguntas, entonces has llegado al lugar correcto. En la academia online Aprende con Eli encontrarás las respuestas a todas tus inquietudes. Somos fieles defensores del aprendizaje en línea como una alternativa más económica y mucho más rápida y efectiva que la educación reglada o universitaria.
Brindamos herramientas de formación personal y profesional para aprender a tu ritmo, en cualquier lugar donde te encuentres, en el horario que mejor te venga, con todo el material disponible, incluyendo conceptos, teoría, ejemplos, casos prácticos explicados al completo, códigos tanto en R como en Python y por supuesto ejercicios prácticos, cuestionarios, tareas, y material complementario para poder seguir los cursos sin ningún problema y que al completarlos seas un experto del análisis de datos.
¡Echa un vistazo a todas las opciones que tenemos!