An Introduction to Machine Learning for Data Engineers
4.5 (2 ratings)
Instead of using a simple lifetime average, Udemy calculates a course's star rating by considering a number of different factors such as the number of ratings, the age of ratings, and the likelihood of fraudulent ratings.
59 students enrolled
Wishlisted Wishlist

Please confirm that you want to add An Introduction to Machine Learning for Data Engineers to your Wishlist.

Add to Wishlist

An Introduction to Machine Learning for Data Engineers

A Prerequisite for Tensorflow on Google's Cloud Platform for Data Engineers
New
4.5 (2 ratings)
Instead of using a simple lifetime average, Udemy calculates a course's star rating by considering a number of different factors such as the number of ratings, the age of ratings, and the likelihood of fraudulent ratings.
59 students enrolled
Created by Mike West
Last updated 9/2017
English
English [Auto-generated]
Current price: $10 Original price: $20 Discount: 50% off
5 hours left at this price!
30-Day Money-Back Guarantee
Includes:
  • 1 hour on-demand video
  • 13 Articles
  • 1 Supplemental Resource
  • Full lifetime access
  • Access on mobile and TV
  • Certificate of Completion
What Will I Learn?
  • You'll be familiar with many of the basic algorithms used in machine learning.
  • You'll have solid understanding of how real world models are built using Python.
  • You'll know exactly what machine learning is and what it isn't.
  • You'll be prepared for the machine learning questions on the Google Certified Data Engineering Exam.
View Curriculum
Requirements
  • You should be familiar with any programming language.
  • A basic understanding of the concepts of machine learning will be helpful but isn't required.
Description

Review from similar course: 

Another Excellent course from a brilliant Instructor. Really well explained, and precisely the right amount of information. Mike provides clear and concise explanations and has a deep subject knowledge of Google's Cloud.

 -- Julie Johnson 

Welcome to An Introduction to Machine Learning for Data Engineers. This course is part of my series for data engineering. The course is a prerequisite for my course titled Tensorflow on the Google Cloud Platform for Data Engineers.

This course will show you the basics of machine learning for data engineers. The course is geared towards answering questions for the Google Certified Data Engineering exam.

This is NOT a general course or introduction to machine learning. This is a very focused course for learning the concepts you'll need to know to pass the Google Certified Data Engineering Exam. 

At this juncture, the Google Certified Data Engineer is the only real world certification for data and machine learning engineers.

Machine learning is a type of artificial intelligence (AI) that allows software applications to become more accurate in predicting outcomes without being explicitly programmed. The key part of that definition is “without being explicitly programmed.”

The vast majority of applied machine learning is supervised machine learning. The word applied means you build models in the real world. Supervised machine learning is a type of machine learning that involves building models from data that exists.

A good way to think about supervised machine learning is:  If you can get your data into a tabular format, like that of an excel spreadsheet, then most machine learning models can model it.

In the course, we’ll learn the different types of algorithms used. We will also cover the nomenclature specific to machine learning. Every discipline has their own vernacular and data science is not different.  

You’ll also learn why the Python programming language has emerged as the gold standard for building real world machine learning models.

Additionally, we will write a simple neural network and walk through the process and the code step by step. Understanding the code won't be as important as understanding the importance and effectiveness of one simple artificial neuron. 

                                                               *Five Reasons to take this Course.*

1) You Want to be a Data Engineer 

It's the number one job in the world. (not just within the computer space) The growth potential career wise is second to none. You want the freedom to move anywhere you'd like. You want to be compensated for your efforts. You want to be able to work remotely. The list of benefits goes on. 

2) The Google Certified Data Engineer 

Google is always ahead of the game. If you were to look back at a timeline of their accomplishments in the data space you might believe they have a crystal ball. They've been a decade ahead of everyone.  Now, they are the first and the only cloud vendor to have a data engineering certification. With their track record I'll go with Google. 

3) The Growth of Data is Insane 

Ninety percent of all the world's data has been created in the last two years. Business around the world generate approximately 450 billion transactions a day. The amount of data collected by all organizations is approximately 2.5 Exabytes a day. That number doubles every month. 

4) Machine Learning in Plain English

Machine learning is one of the hottest careers on the planet and understanding the basics is required to attaining a job as a data engineer.  Google expects data engineers to be able to build machine learning models. In this course, we will cover all the basics of machine learning at a very high level.

5) You want to be ahead of the Curve 

The data engineer role is fairly new.  While you’re learning, building your skills and becoming certified you are also the first to be part of this burgeoning field.  You know that the first to be certified means the first to be hired and first to receive the top compensation package. 

Thanks for your interest in  An Introduction to Machine Learning for Data Engineers. 

Who is the target audience?
  • Data engineering students that need to learn the basics of machine learning for the Google Certified Data Engineering exam.
  • Anyone interested in learning what machine learning is and why Python is the gold standard for building models.
Compare to Other Machine Learning Courses
Curriculum For This Course
45 Lectures
01:10:10
+
An Introduction
8 Lectures 14:57

What are we going to cover in this course. 

Machine learning but specific to Google's Cloud. 

Yes... there are some differences. 

Preview 01:25

Let's learn what a section is according to Udemy and find out what's in this lesson. 

Preview 01:01

Are you the target audience? 

I want this course to be what you are looking for. 

Preview 01:03

What is machine learning. 

Let's define it. 

Preview 02:33

There are two types of machine learning and 99% of all applied machine learning is one type. 

Preview 02:06

In this lecture let's learn about the process of building machine learning models. 

You'll do the same thing time after time when you begin building your machine learning models.

Preview 04:33

Every career has it's own vernacular and machine learning is no different. 

Let's learn some key terms to get started. 

Terminology
01:26

Summary
00:50

Quiz
9 questions
+
Model Building in Python
5 Lectures 10:56

Let's learn why Python has become the gold standard for building machine learning models. 

Why Applied Machine Learning is Mostly Python
01:49

In this lesson let's learn how to create a virtual machine to house our datalab notebooks. 

Creating Datalab Notebooks on Google's Cloud Platform
04:16

Our cloud datalab notebooks are pretty intuitive but in this lesson let's learn some navigation basics. 

Cloud Datalab Notebook Navigation
02:42

It's your turn. 

In this lab you create a datalab for your notebooks. 

Do keep in mind you are paying for this. 

Lab: Creating Our Datalab Virtual Machine
01:12

Summary
00:56

Quiz
8 questions
+
Data Wrangling
6 Lectures 07:56

Much of machine learning is data massage. 

Let's learn about data wrangling in this lesson. 

Data Massaging Introduction
01:29

Just a friendly reminder these next few lessons are quick. 

Lesson Speed Warning
00:14

In this lesson let's learn how to massage our data in Pandas. 

Using Pandas to Massage Data - Data Structures
02:09

The core data structure you'll use often is the Pandas dataframe. 

In this lesson let's learn what that is and how to use it. 

Using Pandas to Massage Data - Data Frame
02:04

A dataframe is like an excel spreadsheet. 

Let's get hands on with the in this lesson. 

Lab: Working with Dataframes
01:36

Summary
00:24

Quiz
10 questions
+
Machine Learning algorithms
8 Lectures 11:52

Linear regression is one of the most basic machine learning models and most used. 

Let's define what they are in this lesson. 

Linear Regression
01:34

It sounds scary but the basic of it aren't. 

Let's learn about Naive Bayes in this lesson. 

Naive Bayes
01:52

Decision trees form the basis of a lot of other algorithms. 

Let's learn the basics in this lesson. 

Decision Trees
01:08

In this lesson let's learn the basics of Logistic Regression. 

Logistic Regression
02:08

They've been around for a long time but now they are all the rage. 

Let's find out what a neural network is. 

Neural Network
01:42

SVMs are one of the most widely used models. 

Let's learn what they are in this lesson.

Support Vector Machines
01:13

In this lesson let's learn what K-Means Clustering is. 

K-Means Clustering
01:38

Google Sample Questions
3 questions

Summary
00:37

Quiz
3 questions
+
Building a Single Perceptron Model
7 Lectures 07:35

These next few lesson will be fast. 

Let's discuss what's important for you to take away from this section. 

Section Approach
00:20

The fundamental building block of all neural networks is the perceptron. 

In this lesson let's learn what that is and how data flow through it. 

The Perceptron
02:01

Can you build a model with one perceptron? 

You can and in this lesson and the next few I'll show you how to do just that. 

Model Building with 1 Perceptron
01:20

Let's start walking through the code of neuron. 

The Perceptron Code
01:16

In this lesson let's continue looking at the code for our perceptron. 

Linear Function Code
00:54

This is the last part of our algorithm. Let's take a look at the code. 

The Entire Perceptron Model
01:09

Summary
00:35

Quiz
10 questions
+
Neural Networks in Under Ten Minutes
5 Lectures 07:52

Backpropagation is a core part of building neural networks. 

Let's learn what it is in this lesson. 

Backpropagation
01:39

Most of the time one layer isn't enough. 

In this lesson let's learn about layers. 

Layers
01:27

What is a batch? 

Let's find out in this lesson. 

Batching
01:03

This is a lab lesson. 

In this lesson you'll build a simple neural network in Python. 

Lab: A Simple Neural Network in TensorFlow
03:27

Summary
00:15

Quiz
8 questions
+
Testing
6 Lectures 09:17

In this lesson let's learn what gradient optimization is. 

Gradient Descent
02:19

This is one of the most prominent issues in machine learning models. 

Let's find out what overfitting is and how to correct it. 

Overfitting and How to Correct it
01:36

Features are columns or attributes that will make or break our models. 

Let's learn about feature engineering in this lesson. 

Feature Engineering
02:02

In this lesson you pick the features you believe will result in the best performance for our model. 

Lab: Pick the Features that Matter
00:26

Let's review the worksheet you completed in the previous lesson on feature selection. 

Feature Engineering Lab Review
02:18

Summary
00:36

Quiz
10 questions
About the Instructor
Mike West
4.2 Average rating
2,968 Reviews
49,367 Students
42 Courses
SQL Server and Machine Learning Evangelist

I've been a production SQL Server DBA most of my career.

I've worked with databases for over two decades. I've worked for or consulted with over 50 different companies as a full time employee or consultant. Fortune 500 as well as several small to mid-size companies. Some include: Georgia Pacific, SunTrust, Reed Construction Data, Building Systems Design, NetCertainty, The Home Shopping Network, SwingVote, Atlanta Gas and Light and Northrup Grumman.

Experience, education and passion

I learn something almost every day. I work with insanely smart people. I'm a voracious learner of all things SQL Server and I'm passionate about sharing what I've learned. My area of concentration is performance tuning. SQL Server is like an exotic sports car, it will run just fine in anyone's hands but put it in the hands of skilled tuner and it will perform like a race car.

Certifications

Certifications are like college degrees, they are a great starting points to begin learning. I'm a Microsoft Certified Database Administrator (MCDBA), Microsoft Certified System Engineer (MCSE) and Microsoft Certified Trainer (MCT).

Personal

Born in Ohio, raised and educated in Pennsylvania, I currently reside in Atlanta with my wife and two children.