Mohammed Kaabar is interested in several programming languages such as Scala, C++, C, JavaScript, Python, HTML 5 and MATLAB Programming.
He became IEEE Student Member, IEEE Computer Society Member, IEEE Electron Devices Society Member, IEEE Women in Engineering Society Member and IEEE Communications Society Member, in 2011 and 2012, respectively. In 2011 & 2012, he participated in several competitions, conferences, research papers and projects. In 2011, he attended also a three-month course in numerical approximation techniques including error analysis, root finding, interpolation, function approximation, numerical differentiation, numerical integration and numerical solutions of initial value problems. Ultimately, he worked on several projects such as “PCA Implementation and Classification of Data in Recognition of Arabic Sign Language Alphabet using Polynomial Classifiers” and “Modeling a GaAs MESFET Device Structure using Silvaco Software:Athena and Atlas”. For more information about him, please visit his personal website: http://www.mohammed-kaabar.net
Take your courses with you and learn anytime, anywhere.
Learn and practice real-world skills and achieve your goals.
In this course, you will be Introduced to several numerical approximation methods such as interpolation: divided difference, polynomial approximations, iterative methods for solving linear systems, numerical differentiation and numerical integration.
During five weeks of the course, you will be learning these methods and compare them as well.
The course is divided into five weeks where each week you will find a set of video lectures posted with a PDF version of lecture notes as well.
You are welcome to take this course if you want to learn and study the advanced numerical analysis methods.
I highly recommend you to solve this problem set before looking at problem set solutions.
GOOD LUCK!
GOOD LUCK!
In this lecture, you will be introduced to whether matrix is diagonally dominant or not in order to use it for applying gauss-siedel method. Moreover, several examples about that were given.
In this lecture, you will be introduced to the successive over relaxation (SOR) method and how does this method depend on gauss-siedel method?. In addition, the algorithm of SOR method was also given, At the end of this lecture, an example about SOR method was given.
In this lecture, you will be introduced to the successive over relaxation (SOR) method and how does this method depend on gauss-siedel method?. In addition, the algorithm of SOR method was also given, At the end of this lecture, an example about SOR method was given.
In this lecture, you will be introduced to the trapezoidal rule which is one of the basic quadrature rules. Moreover, you will be introduced the proofs of both approximation part and error of trapezoidal rule.
In this lecture, you will given a summary of all topics discussed in the Advanced numerical analysis course.
The Advanced Numerical Analysis course is a great course and very helpful in our life as well as it includes amazing topics in advanced numerical analysis such as newton's method, Muller's method, Divided difference, iterative methods and numerical integration & differentiation. In addition, the instructor is excellent because he taught the material of this course in an excellent way that makes everyone understands the course material easily without any difficulty.
I would like to thank you Mohammed so much for offering an advanced course in numerical analysis. After taking your previous course "Introduction to Numerical Analysis", I really enjoyed in all discussed topics in your two courses because they are very interesting topics ranging from introductory level to advanced level. Thank you again for this great course.